已知:a,b,c为有理数,a²+b²+c²=ab+bc+ca,试说明a=b=c.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:41:36
xJ0FMlK{)A(Ͱ0/6v5:Tp1I畯I-ex$'~?K:~>0đ~э/ON^")`hwɛr*}~熁
3e"\n:3>KNJ?)`W_AAAN=k`UV;S_jv
Oe
eca^S-mVGxw=LTzsV j:a`V7R{C5ZO=0 f j)߽y`-H
已知:a,b,c为有理数,a²+b²+c²=ab+bc+ca,试说明a=b=c.
已知:a,b,c为有理数,a²+b²+c²=ab+bc+ca,试说明a=b=c.
已知:a,b,c为有理数,a²+b²+c²=ab+bc+ca,试说明a=b=c.
a²+b²+c²=ab+bc+ca
两侧同乘以2,得
2a²+2b²+2c²=2ab+2bc+2ca
即,2a²+2b²+2c²-2ab-2bc-2ca=0
即,a²-2ab+b²+b²-2bc+c²+c²-2ca+a²=0
即,(a-b)²+(b-c)²+(c-a)²=0
因为a,b,c为有理数,所以(a-b)²、(b-c)²、(c-a)²也都是有理数.
所以(a-b)²大于等于0、(b-c)²大于等于0、(c-a)²大于等于0.
所以(a-b)²=0,(b-c)²=0,(c-a)²=0
所以a=b,b=c,c=a
即a=b=c