已知椭圆x2/m2+y2/n2=1过定点(3√3,1),求m+n的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:13:00
已知椭圆x2/m2+y2/n2=1过定点(3√3,1),求m+n的最小值
xTOAW,bS޸٤ !5M PabU@igfB֋0̛y| '<`=̥GG$'V<f?FpṈl\J-LSBӓ{_!ra.h}1n1JAAId|!_C"'ր@pgF#_f׺YJ[:![2,>N&Ju%h Hd3kGfSp#C2L2׬Y0V]=<2H} ^-Osc0Mq "{]r6:;I lv :^;'h RrX)f Ŕ8E&›AUSl6iA}[2UC:?ruvTZaW'i?:3E(SWKx@4?qvdXXYxjdEr~i߀f P e:ٚdxy݆pze/vJGVy#K,v W:${!^a뮩,:[_3r-\EQ%`7/hks!

已知椭圆x2/m2+y2/n2=1过定点(3√3,1),求m+n的最小值
已知椭圆x2/m2+y2/n2=1过定点(3√3,1),求m+n的最小值

已知椭圆x2/m2+y2/n2=1过定点(3√3,1),求m+n的最小值
由于方程过定点 (3 /3,1)所以 27/m^2+1/n^2=1
题目也就是要在这个限制条件下求m+n的最小值
估计提问的同学是高中生
下面提供一种比较特殊的解法
由(m+n)^2 * (27/m^2+1/n^2)
=27+54*n/m+27*(n/m)^2 +(m/n)^2+2*(m/n)+1
令n/m=x
上面式子=
28+54x+27x^2+1/x^2+2/x
=28+27(x+1)^2-27+(1/x+1)^2-1
可见上式中在X=-1的情况可以小到0 大则无限制
故M+N没有所谓的最大值
比如M=-10000000
同样可以求出一个不大的N值 它们之和可以无限小
对不起 刚才弄错了 估计这个题目里面限制M N均为正值
那么稍微做点修改28+27(x+1)^2-27+(1/x+1)^2-1
现在高中高三应该稍微介绍了导数的知识.可以利用导数求出X=?时m+n的平方达到最大值

1、
a²=25
b²=16
c²=25-16=9
c=3
所以F1(-3,0)
F2(3,0)
所以M1F1=√[(4-3)²+(2.4-0)²]=2.6
M1F2=√[(4+3)²+(2.4-0)²]=7.4
2、
a²=25
a=5
由椭圆定义
M2F1+M2F2=2a=10
所以M2到另一个焦点的距离=10-3=7