.[1/cos(-α)+cos(180°+ α )]/[1/sin(540°-α)+sin(360°-α)]=tan^3α

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 00:42:24
.[1/cos(-α)+cos(180°+ α )]/[1/sin(540°-α)+sin(360°-α)]=tan^3α
x)Ӌ6O/=QS008A[FX}dqf P 36bmKmI*ҧIv6t[ F@M[]X \[ InPBYgÓĶ}}ً};`o] BSA_Ax҄)PS64 BuT!j I#40")g>[醍OMڱɮk<[a_\g7

.[1/cos(-α)+cos(180°+ α )]/[1/sin(540°-α)+sin(360°-α)]=tan^3α
.[1/cos(-α)+cos(180°+ α )]/[1/sin(540°-α)+sin(360°-α)]=tan^3α

.[1/cos(-α)+cos(180°+ α )]/[1/sin(540°-α)+sin(360°-α)]=tan^3α
cos(-α)=cosα,
cos(180°+ α)= -cosα
sin(540°-α)=sinα
sin(360°-α)= -sinα
所以
原式左边
=(1/cosα -cosα) / (1/sinα -sinα)
=(1-cos²α)/cosα / (1-sin²α)/sinα
=(sin²α/cosα) / (cos²α)/cosα
=(sinα/cosα)^3
=tan^3 α
这样就得到了答案