已知函数f(x)=x^2-2x-3,递增等差数列{an}中,a1=f(x-1),a2=-3/2,a3=f(x)求x的值,通项an,a1+a3+a5的值答案x=3,an=3/2n-9/2,-3/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:34:42
已知函数f(x)=x^2-2x-3,递增等差数列{an}中,a1=f(x-1),a2=-3/2,a3=f(x)求x的值,通项an,a1+a3+a5的值答案x=3,an=3/2n-9/2,-3/2
xVNA~ML̮brCfc#Q()h‚hg\ 93Sl/L 9gԟ ;|v?Κ[И0Ly0d^J< )'̥NȤJ㬷(Zm~ #pCfSJW$ #p߾j%us4z8xV\]q+S+STR86b UcRțܭvLiwɡ7[(jZBAbȉy~r=yb/0&8U'q@k%*CTɚ+k]PoR 

已知函数f(x)=x^2-2x-3,递增等差数列{an}中,a1=f(x-1),a2=-3/2,a3=f(x)求x的值,通项an,a1+a3+a5的值答案x=3,an=3/2n-9/2,-3/2
已知函数f(x)=x^2-2x-3,递增等差数列{an}中,a1=f(x-1),a2=-3/2,a3=f(x)
求x的值,通项an,a1+a3+a5的值
答案x=3,an=3/2n-9/2,-3/2

已知函数f(x)=x^2-2x-3,递增等差数列{an}中,a1=f(x-1),a2=-3/2,a3=f(x)求x的值,通项an,a1+a3+a5的值答案x=3,an=3/2n-9/2,-3/2
解析,
f(x)=x²-2x-3=(x-1)²-4
a1=f(x-1)=x²-4x,
a3=x²-2x-3,
又,an是等差数列,
故,2a2=a1+a3,
因此,-3=2x²-6x-3,解出,x=0,x=3
当x=0时,a1=0>a3=-3,又an是递增的等差数列,因此,舍去.
因此,x=3.
当x=3时,a3=0,d=a3-a2=3/2.
a1+a3+a5=3a3=0,
an=a1+(n-1)d=-3+(n-1)*(3/2)
=3n/2-9/2.

f(x)=(x-1)^2-4
a1=f(x-1)=(x-2)^2-4
a3=(x-1)^2-4
a1+a3=-3
(x-2)^2-4+(x-1)^2-4
=2x^2-6x-3
=-3
2x(x-3)=0
x=0或x=3
x=0 a1=0 a2=-3/2 d=a2-a1=-3/2<0 递减等差数列 ...

全部展开

f(x)=(x-1)^2-4
a1=f(x-1)=(x-2)^2-4
a3=(x-1)^2-4
a1+a3=-3
(x-2)^2-4+(x-1)^2-4
=2x^2-6x-3
=-3
2x(x-3)=0
x=0或x=3
x=0 a1=0 a2=-3/2 d=a2-a1=-3/2<0 递减等差数列 舍
x=3 a1=-3
d=a2-a1=3/2
an=a1+(n-1)d
=-3+3n/2-3/2
=3n/2-9/2
a3=0
a1+a3+a5=3a3=0

收起


等差数列为递增数列,公差d>0
a1(x-1)²-2(x-1)-3<-3/2,整理,得x²-4x<-3/2
(x-2)²<5/2
2-√10 /2a3>a2 f(x)>-3/2
x²-2x-3>-3/2,整理,得x²-2x>3/2<...

全部展开


等差数列为递增数列,公差d>0
a1(x-1)²-2(x-1)-3<-3/2,整理,得x²-4x<-3/2
(x-2)²<5/2
2-√10 /2a3>a2 f(x)>-3/2
x²-2x-3>-3/2,整理,得x²-2x>3/2
(x-1)²>5/2 x>1+√10/2或x<1 -√10 /2
综上,得1+√10/2数列成等差数列,则2a2=a1+a3
2(-3/2)=(x-1)²-2(x-1)-3+x²-2x-3
整理,得
x²-3x=0
x(x-3)=0
x=0(舍去)或x=3
a1=f(x-1)=f(2)=4-4-3=-3
a3=f(x)=f(3)=9-6-3=0
d=a3-a2=a2-a1=0-(-3/2)=3/2
an=a1+(n-1)d=-3+(3/2)(n-1)=(3n-9)/2=3n/2 -9/2
a1+a3+a5=a3-2d+a3+a3+2d=3a3=0

你提供的参考答案,an是正确的,a1+a3+a5是错误的。

收起