指数函数比较大小6^7与7^6怎么比较大小;以及a^b与b^a(a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:18:44
指数函数比较大小6^7与7^6怎么比较大小;以及a^b与b^a(a
xRJ@A&%LSm`j[ J.|RP!ῄi\)7sw*lԴp& xؠ(_Znt.@aWqmPKPcgQN&!M腇eլGB % D!im`.I[1yM3qI;E!N[ך|Mc14⋐5b_:6!QI,JUCJG27 @2dζ8rr,~Y 7]~~(cA[a*R -Q|>

指数函数比较大小6^7与7^6怎么比较大小;以及a^b与b^a(a
指数函数比较大小
6^7与7^6怎么比较大小;以及a^b与b^a(a

指数函数比较大小6^7与7^6怎么比较大小;以及a^b与b^a(a
先证明一个一般性的命题:n^(n+1)>(n+1)^n(n≥3)
证明:①n=3时,3^4>4^3,命题成立.
②n=k时,命题成立,即:k^(k+1)>(k+1)^k.
k^(k+1)/(k+1)^k>1.
则(k+1)^(k+2)/(k+2)^(k+1)=((k+1)/(k+2))^(k+1)•(k+1)
>(k/(k+1))^(k+1)•(k+1)= k^(k+1)/(k+1)^k>1.
即(k+1)^(k+2)>(k+2)^(k+1)
这说明n=k+1时,命题也成立.
所以n^(n+1)>(n+1)^n(n≥3)
令n=6即得:6^7>7^6.