3.a1=1,a(n+1)=2an+1,求an4.a1=1,a(n+1)=2an/2+an,求an

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 16:49:39
3.a1=1,a(n+1)=2an+1,求an4.a1=1,a(n+1)=2an/2+an,求an
xRMO0+;2WiZ0zX#d$3ԣ1D#((zD^p:9/],>ӧ]..a"&.^~r=٫JY?4  hD|R2ZTi̋I*Ng:Xg0ʢ gOU[ Z0: FwQt`{]D{=[C U@]Ѥ%1P/ycT,n^Jt朸H!v=HapEG?Mh4kq:`&C05 C1[( m(!ی*kL>*] hmR N)Mo]zɖ\V%(Y {^T> }= D2 2K;/KT

3.a1=1,a(n+1)=2an+1,求an4.a1=1,a(n+1)=2an/2+an,求an
3.a1=1,a(n+1)=2an+1,求an
4.a1=1,a(n+1)=2an/2+an,求an

3.a1=1,a(n+1)=2an+1,求an4.a1=1,a(n+1)=2an/2+an,求an
1、a(n+1)=2an+1
a(n+1)+1=2an+2=2[an+1]
则:[a(n+1)+1]/[an+1]=2=常数,则数列{an+1}是以an+1=2为首项、以q=2为公比的等比数列,则:an+1=2×2^(n-1)=2^n,则:an=2^n-1;
2、a(n+1)=2an/[2+an] 两边取倒数,得:
1/[a(n+1)]=[2+an]/(2an)=1/an+(1/2) 则:
1/[a(n+1)]-1/[an]=1/2=常数,则数列{1/an}是以1/a1=1为首项、以d=1/2为公差的等差数列,则:1/[an]=1+(1/2)(n-1)=(n+1)/2,则:an=2/(n+1)

3.数列1,3,7,15.。。an=2的n次-1
4数列1,2,4,8.。。an=2的n次

3、a(n+1)+1=2(an+1)所以an+1为首项为2公比为2的等比树立,an+1=2*2^(n-1)=2^n
an=2^n-1
4、没看懂