等比数列{an}中a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{1/bnbn+1}的前n项和Sn=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 05:28:59
等比数列{an}中a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{1/bnbn+1}的前n项和Sn=
xRJ@4ͲIAŋPBTE ZJk& '͖"xKٙ޼Gj9ԤndC-9eKl:Pr̦=DŽ j7`8!-A_|S4%d[QzL%g߉ALǡid|w#/Mz/=1xqjbo dL*s?pL7ގ<@f`(1UH OVuuz3ݣvْa\͚f"%3b6Zj0_hD#܀V9ӿ 6s

等比数列{an}中a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{1/bnbn+1}的前n项和Sn=
等比数列{an}中a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{1/bnbn+1}的前n项和Sn=

等比数列{an}中a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{1/bnbn+1}的前n项和Sn=
因为数列{an}是等比数列,所以公比q满足 a4/a1=q^3,由a1=3,a4=81 即知 q^3=27,所以q=3.
因此等比数列{an}的通项公式为 an=a1*q^(n-1)=3*3^(n-1)=3^n.
从而数列{bn}的通项公式为 bn=log3(an)=n.因此数列{1/bnb(n+1)}的前n项和为
Sn=1/(b1b2)+1/(b2b3)+...+1/(bnb(n+1))
=1/(1*2)+1/(2*3)+...+1/(n*(n+1)) (用裂项相消)
=(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))
=1-1/(n+1)
=n/(n+1)
即数列{1/bnb(n+1)}的前n项和 Sn=n/(n+1).