已知数列an的前四项和为sn、且对任意n属于自然数、有n an sn成等差数列(1)bn=an+1 求证bn是等比数列(2)数列an的前n项和为Tn,求满足1/17 < Tn+n+2/T2n+2n+2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 05:57:20
已知数列an的前四项和为sn、且对任意n属于自然数、有n an sn成等差数列(1)bn=an+1 求证bn是等比数列(2)数列an的前n项和为Tn,求满足1/17 < Tn+n+2/T2n+2n+2
xTNA~2lfM/lX.,&h-@ "adg<;3l1Qo1i;lv%o>O ^mx09mjM᮲;G#[Y[`.ȔP0tUySRd@٢Mm>ʧem8!4$3 97-3NyŃd%^!(wC/M!Pe^L1R{yݮ''J*V9hK)4,ɢSƷNOOWJ(X1 NdLNFkC` Vb&\c,!ֈ/eভy^p}|[

已知数列an的前四项和为sn、且对任意n属于自然数、有n an sn成等差数列(1)bn=an+1 求证bn是等比数列(2)数列an的前n项和为Tn,求满足1/17 < Tn+n+2/T2n+2n+2
已知数列an的前四项和为sn、且对任意n属于自然数、有n an sn成等差数列(1)bn=an+1 求证bn是等比数列
(2)数列an的前n项和为Tn,求满足1/17 < Tn+n+2/T2n+2n+2

已知数列an的前四项和为sn、且对任意n属于自然数、有n an sn成等差数列(1)bn=an+1 求证bn是等比数列(2)数列an的前n项和为Tn,求满足1/17 < Tn+n+2/T2n+2n+2
因为Sn为an的前四项和,是一个固定值,所以,记为x
则n,an,x等差对任意n有效,那么n+x=2*an对任意n有效an=n/2+(a1+a2+a3+a4)/2
an是一个等差数列,公差为1/2,an=n/2+2*a1+3/2,a1=2+2*a1,a1=-2
an=n/2-5/2
bn=an+1=n/2-3/2
明显是一个等差数列
所以题目写的有问题,应该是前an的n项和为sn
那么
2*an=n+Sn
2*a(n+1)=n+1+S(n+1)=n+1+Sn+a(n+1)=2*an+1+a(n+1)
a(n+1)=2*an+1
记a(n+1)+t=2(an+t),解得t=1
即a(n+1)+1=2[an+1]
an+1是一个等比数列即bn是等比数列
2、
n=1时,满足
2*a1=1+S1=1+a1,得a1=1
an+1=(a1+1)*2^(n-1)=2^n 其中^表示次方数,^2表示平方
an=2^n -1
Tn=S(an=2^n)-S(an=1)=2^(n+1)-1-n
(Tn+n+2)/(T2n+2n+2)=[2^(n+1)+1]/[2^(2n+1)+1]

7*[2^(n+1)+1]7,n>=3
[2^(2n+1)+1]

(1)对任意n属于自然数、有n an sn成等差数列
2an=n+sn
s(n-1)=2a(n-1)-(n-1)
an=sn-s(n-1)=2an-2a(n-1)-1
an+1=2【a(n-1)+1】
∵bn=an+1
∴b(n-1)=2b(n-1)
∴bn是等比数列
(2)a1=1
b1=2
bn=2^n
a...

全部展开

(1)对任意n属于自然数、有n an sn成等差数列
2an=n+sn
s(n-1)=2a(n-1)-(n-1)
an=sn-s(n-1)=2an-2a(n-1)-1
an+1=2【a(n-1)+1】
∵bn=an+1
∴b(n-1)=2b(n-1)
∴bn是等比数列
(2)a1=1
b1=2
bn=2^n
an=2^n-1
Tn=2^(n+1)-2-n
1/17 < Tn+n+2/T2n+2n+2 <1/7
Tn+n+2=2^(n+1)
T2n+2n+2=2^(2n+1)
∴1/17 <2^(n+1)/ 2^(2n+1)<1/7
∴7<2^n<17
∴n=3,4

收起

已知数列an的前四项和为sn、且对任意n属于自然数、有n an sn成等差数列(1)bn=an+1 求证bn是等比数列(2)数列an的前n项和为Tn,求满足1/17 < Tn+n+2/T2n+2n+2 已知数列{an}的前n项和为Sn,且对任意n属于N ,有n,an,Sn成等差数列.(1).求数列{an}的通项公式;(2)求数列{nan}的前n项和Tn. 已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn、an、n成等差数列1、求证:数列{an+1}是等比数列,并求{an}的通项公式 已知数列an的前n项的和为sn,且对任意n∈N有an+sn=n,设bn=an-1,求证数列bn是等比数列 数列{an}前n项和为Sn,已知a1=1|5,且对任意正整数m,n,都有am+n = am×an,若Sn 若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)^3成立,求数列{an}的通项公式.已知无穷数列{an}的各项均为正整数,Sn数列的前n项和.(1)若数列{an}是等差数列,且对任意正整数n都有S(n^3)=(Sn 已知数列{an}的前n项和为Sn,且对任意正整数n,都有an是n与Sn的等差中项,求数列{an}的通项公式 已知数列{an}的前n项和为Sn,且对任意正整数n都有2Sn = ( n + 2 ) an - 1(1)求数列{an}的通项公式 已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等比数列 已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等比...已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n(1)设bn=an-1,求证:数列{bn}是 1.已知数列{an}的前四项和等于4,设前n项和为Sn,且n≥2时,an=1/2(根号Sn+根号Sn-1),求S10 已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足 2倍的根号下Sn等于an+1,求数列{an}的通项公式? 在数列{an}中前n项和为Sn,且对任意正整数n,an+sn=20481.求数列{an}的通项公式2.设数列{log2 an}的前n项和为Tn 求Tn 设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096,)求{an}的通项公式 设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096(2)设数列{log an}的前n项和为Tn,对数列{Tn},从第几项起Tn 已知数列{an}的前n项和为Sn,且对任意正整数n,都有an是n与Sn的等差中项,1.求证:an=2a(n-1)+1(n>=2) 2.求证:数列{an+1}为等比数列3.求数列{an}的前n项和Sn 已知正数数列{an}的前n项和为Sn,且对于任意正整数n满足2根号Sn=an+1 求an通项 已知正数数列{an}的前n项和为Sn,且对于任意正整数n满足2根号Sn=an+1 求an通项