数列{an}的通项an=n²-n,求sn?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 14:55:50
xM
0%! `RR\.EqQq-;oKQq+8+"$ߛyFmwyaXK-tnUC=_Ky|3A^!%B@BLċ"DpldYiACa6Zb#io*Bygݵ`j+W6̖aE;x( rC2Fc35ya zN1
数列{an}的通项an=n²-n,求sn?
数列{an}的通项an=n²-n,求sn?
数列{an}的通项an=n²-n,求sn?
a1 = 1² - 1
a2 = 2² - 2
a3 = 3² - 3
...
an = n² -n
Sn = (1²+2²+...+n²) - (1+2+..+n)
=n(n+1)(2n+1)/6 - n(n+1)/2
=n(n²-1)/3
sn=(1²+2²+....+n²)-(1+2+3+,,,,+n)
=n(n+1)(2n+1)/6-n(n+1)/2
=1/6n(n+1)[2n+1-3]
=1/3n(n+1)(n-1)