请求解决高数, f(x)在负无穷到正无穷上连续,且f[f(x)]=x证明至少存在一点a属于负无穷到正无穷,使f(a)=a.f(x)在0到正无穷上有定义,且f ' (1)=a!=0,对任意x,y属于0到正无穷满足f(xy)=f(x)+f(y),求f(x).
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 01:20:28
收录互联网各类作业题目,免费共享学生作业习题
头条考试网手机作业共收录了 千万级 学生作业题目
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 01:20:28