高数~不定积分~求∫1/x[(x+1)/(x-1)]^(1/2)dx~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:40:26
高数~不定积分~求∫1/x[(x+1)/(x-1)]^(1/2)dx~
xn0_R2ь}n[:ȗ 3abDYfӲB"J]TC8!)iW>w~b_o'˫%jbUȪF`M-@V2 t8?ߒ, T<2Vli]<@Hz^ճY=϶݇db|ƀ(M 4cJp",B H=ףyDDDDI,A zV*A ~$CQ셾<*vf}~:l[^UL5R4dHl?-~b&R}oMC&thG@ t*XF /қmTF#C9MuL}c}}QYY7

高数~不定积分~求∫1/x[(x+1)/(x-1)]^(1/2)dx~
高数~不定积分~求∫1/x[(x+1)/(x-1)]^(1/2)dx~

高数~不定积分~求∫1/x[(x+1)/(x-1)]^(1/2)dx~
令√((x+1)/(x-1))=t
则x=(t^2+1)/(t^2-1)=1+2/(t^2-1)
则dx=-2/(t^2-1)^2*2tdt=-4t/(t^2-1)^2dt
原式=∫(t^2-1)/(t^2+1)*t*(-4t)/(t^2-1)^2dt
=-4∫t^2/[(t^2+1)(t^2-1)]dt
=-2∫[1/(t^2+1)+1/(t^2-1)]dt
=-2arctant-2∫dt/[(t+1)(t-1)]
=-2arctant-∫[1/(t-1)-1/(t+1)]dt
=-2arctant-ln|t-1|+ln|t+1|+C
再代回去