求解当x趋向0时lim[sin(2^x)ln(x+1)]/(2^x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:07:56
求解当x趋向0时lim[sin(2^x)ln(x+1)]/(2^x-1)
x){ONx鄉Ϧo̍.0Ө6Ԍt 5mIפ_`gC]@ U(*j**T(h)D*Jc @J @JyF 0E ~qAb6`)+l=

求解当x趋向0时lim[sin(2^x)ln(x+1)]/(2^x-1)
求解当x趋向0时lim[sin(2^x)ln(x+1)]/(2^x-1)

求解当x趋向0时lim[sin(2^x)ln(x+1)]/(2^x-1)
lim [sin(2^x)ln(x+1)]/(2^x - 1) = lim sin(2^x) * [ lim ln(x+1) / (2^x - 1) ] = sin1 * lim {1/[(x+1)* 2^x * ln2] } = sin1 / ln2

用罗比达法则,结果=0