高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:35:30
高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)
x){zƳbݾ럮}/P$MB/m+u0L(,+I)6y &HP}=ٱž@m@5l*m"A<[iB{:m/g.y{)Pu}Pikā R jTO;`FՓRa @֝R. ے<(UZ7M" qٜO?';>ٽ"o:X)$d^6-~a!-( A26yv4:2

高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)
高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)

高数:设可导函数f(x)满足f(x)cosx+2∫(0~x)f(t)sintdt=x+1,求f(x)
f(x)cosx+2∫(0~x)f(t)sintdt=x+1
两边求导f′(x)cosx-sinxf(x)+2f(x)sinx=1
即f′(x)cosx+f(x)sinx=1
两边同时除以cos²x,得
[f′(x)cosx+f(x)sinx]/cos²x=1/cos²x
即[f(x)/cosx]′=1/cos²x
两边积分∫(0~x)[f(x)/cosx]′dx=∫(0~x)1/cos²xdx
f(x)/cosx|(0~x)=tanx|(0~x)
f(x)/cosx-f(0)=tanx
在原方程中令x=0
得f(0)=1
那么f(x)/cosx-1=tanx
f(x)=sinx+cosx