求两平面之间的最短距离!用条件极值求:求一个旋转抛物面z=x^2+y^2到平面x+y-z=1的最短距离!注意用条件极值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:29:56
求两平面之间的最短距离!用条件极值求:求一个旋转抛物面z=x^2+y^2到平面x+y-z=1的最短距离!注意用条件极值.
xUR@~g^g@G7m:AE8( "ZP_&I|& =ηDp\*ZVHגV8B(ۢq}g윑޽! w`9&ͻK7?!EHV%^pɒ**deV:#ܣ޿d _,z%mnu>AcU($ˏl>+ pdo4k#V!@@vT}>+ҵ2NH1;; ~|8iw+ʜ IEAtȜ) VpFF=wo?h& WdeI z9}VETm>&lBl WY\̐JadM Vqc8s@Y^q- kOc/C!c/ 6:|?Y}/Y9# ix"nh;kwk40"~2ԼDF)u304dV5U&=hW0AT^uypT ~٢lA`]?vC;'Iv`ԠF\t>quگ=Cdj$#,t-Gv`z]?HQHtze7kp @PHbfq^)Z =#ʐMP>EAe_!Q/d@yF#Lg/KKXHQw2Co,v'`\,dÂ8~3p@n۔H7znRA}Re|{qDx=eFv)p .O鱽*#DKH7ش5Ɂ Z+m@0[EGFOp:nRtuI Jp$; +su

求两平面之间的最短距离!用条件极值求:求一个旋转抛物面z=x^2+y^2到平面x+y-z=1的最短距离!注意用条件极值.
求两平面之间的最短距离!
用条件极值求:
求一个旋转抛物面z=x^2+y^2到平面x+y-z=1的最短距离!
注意用条件极值.

求两平面之间的最短距离!用条件极值求:求一个旋转抛物面z=x^2+y^2到平面x+y-z=1的最短距离!注意用条件极值.
当抛物面z=x^2+y^2上某点G处的切平面和平面x+y-z=1平行时,二者间的距离最短,最短距离为切平面和平面x+y-z=1之间的距离,也即是G到平面x+y-z=1的距离.
抛物面z=x^2+y^2上G处的法向量为(2x,2y,-1),平面x+y-z=1的法向量为(1,1,-1),前述的两个平面平行,等价与这两个平面的法向量平行,即有:
2x/1=2y/1=-1/(-1),得x=1/2,y=1/2,进而得到z=x^2+y^2=1/2,
即得G坐标(1/2,1/2,1/2).
G到平面x+y-z=1的距离为:sqrt(3)/6.
上一步是套用公式:点(x0,y0,z0),到直线AX+BY+CZ-D=0的距离为:
(A*x0+B*y0+C*z0-D)的绝对值除以根号下(A^2+B^2+C^2),
前文中的sqrt表示开方
方法二:
设抛物面上一点G为(x,y,x^2+y^2),
G到平面x+y-z=1的距离为:
abs[x^2+y^2-x-y+1]/sqrt(3)
=[(x-1/2)^2+(y-1/2)^2+1/2]/sqrt(3)
大于等于(1/2)/sqrt(3)=sqrt(3)/6
其中等号成立条件为x=1/2,y=1/2,
abs表示绝对值,
将x,y,代回,可求得G坐标(1/2,1/2,1/2).
方法三:拉格朗日乘数法
设抛物面上一点A(x1,y1,z1)
平面上一点B(x2,y2,z2)
AB距离S的平方为:
F1=(x1-x2)^2+(y1-y2)^2+(z1-z2)^2
构造函数:
F=F1+p*(x1^2+y1^2-z1)+q*(x2+y2-z2-1),(1)
同时注意到
x1^2+y1^2-z1=0(2)
x2+y2-z2-1=0(3)
(1)式分别对x1,y1,z1,x2,y2,z2求偏导,结果均为0,这样得到6个方程,再联立方程(2)(3),就有8个方程,解8个未知数:x1,y1,z1,x2,y2,z2,p,q.即可.
说明:解你这道题,从高中到大学又重上了一遍,

求两平面之间的最短距离!用条件极值求:求一个旋转抛物面z=x^2+y^2到平面x+y-z=1的最短距离!注意用条件极值. 用多元函数微分学,条件极值的方法如何求抛物线和直线的最短距离? 是关于多元函数的极值问题?求旋转抛物面 2 2 Z=X +Y 与平面X+Y-Z=1之间的最短距离 求C++两线段之间的最短距离程序已经判断过两条线段不相交,并且不存在端点之间求距离.是平面的. 抛物面z=x*2+y*2被平面x+y+z=1截得一椭圆,求原点到此椭圆的最长距离和最短距离请用条件极值知识 高数多元函数求极值问题:求抛物线y=x²到直线x-y-2=0之间的最短距离.这个题目用高中方法很好解,但是这怎么用大学多元函数极值发求解?y=x²是平面一条固定的抛物线,那么F(x,y 求圆锥和圆两点之间的最短距离急用 如何求一个点与圆之间的最短距离? 怎么求空间中两直线的最短距离 数学题求蚂蚁爬行的最短距离! 线段到某点的最短距离怎么求 matlab求最短距离的程序 求最短距离之和的长度 高数题,Lagrange乘数法解决条件极值问题在平面坐标系OXY中,求点P(1,2)到曲线y=x²的最短距离要求:1)写出目标函数f(x,y)2) 写出约束条件3) 写出Lagarange函数4)写出最小点满足的方程组按Alt 求平面x+y-z=1与点(2,1,-1)的最短距离 用多元函数求极值的方法计算点(2,8)到抛物线Y^2=4X的最短距离请高数帮帮忙 求平面x+y+z=2与曲面x^2-2y^2+2z^2=1(x,y,z>0)之间的最短距离 求旋转抛物面z=x^2+y^2与平面x+y-2z=2之间的最短距离?(详细)