证明两两相交且不共点的四条直线在同一平面内(立体中的)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:09:52
证明两两相交且不共点的四条直线在同一平面内(立体中的)
证明两两相交且不共点的四条直线在同一平面内(立体中的)
证明两两相交且不共点的四条直线在同一平面内(立体中的)
证明:两两相交且不共点的四条直线a,b,c,d.
设a,b相交于点A,则a,b两条直线确定一个平面P
设c分别与直线a,b交于B,C.因为a属于平面P,所以a上的点B必在平面P内,同理b上的点C也必在平面P内,故直线c属于平面P,同理可证直线d属于平面P.所以两两相交且不共点的四条直线在同一平面内.
证毕.
证明:第一种情形:四条直线l1,l2,l3,l4没有三条直线过同一点,
这时它们共有六个交点A、B、C、D、E、F,它们各不相同,
因直线l1,l2相交于点A,可决定一平面α;
因点B、C、D、E均在平面α内,
所以直线l3,l4也在平面α内,
故直线l1,l2,l3,l4同在平面α内.
第二种情形:四条直线l1,l2,l3,l4中有三条,
...
全部展开
证明:第一种情形:四条直线l1,l2,l3,l4没有三条直线过同一点,
这时它们共有六个交点A、B、C、D、E、F,它们各不相同,
因直线l1,l2相交于点A,可决定一平面α;
因点B、C、D、E均在平面α内,
所以直线l3,l4也在平面α内,
故直线l1,l2,l3,l4同在平面α内.
第二种情形:四条直线l1,l2,l3,l4中有三条,
例如l1,l2,l3,过同一点A,
因直线l4不过点A,
故由点A及直线l4可决定一平面α,
因直线l4与直线l1,l2,l3,相交,
设交点为B、C、D,
则点B、C、D在直线l4上,从而在平面α内,
因此,直线l1,l2,l3,各有两点在平面α内,
即这三条直线在平面α内,
故四直线l1,l2,l3,l4在同一平内.
收起