在三角形ABC中,sinA=sinBsinC,sin²A=sin²B+sin²C,求三角形的形状抱歉,上面的,sinA是=2sinBsinC的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:30:32
在三角形ABC中,sinA=sinBsinC,sin²A=sin²B+sin²C,求三角形的形状抱歉,上面的,sinA是=2sinBsinC的
xSJ@A4 >*f IPhrShIR)"R-&ŪƍRwn{:wRھ mi7X(o% e~#%yf 2CJPngwt3O,8k =b~4|•iQC跶ygwYՇG |3`'j m&IɯA(xbX)dVQ$ï0#K4%2fUh Nߤ @eDcPF,յQ"f3{5db̕Kb:LJ Y)d/S]

在三角形ABC中,sinA=sinBsinC,sin²A=sin²B+sin²C,求三角形的形状抱歉,上面的,sinA是=2sinBsinC的
在三角形ABC中,sinA=sinBsinC,sin²A=sin²B+sin²C,求三角形的形状
抱歉,上面的,sinA是=2sinBsinC的

在三角形ABC中,sinA=sinBsinC,sin²A=sin²B+sin²C,求三角形的形状抱歉,上面的,sinA是=2sinBsinC的
sin²A=sin²B+sin²C
根据正弦定理
∴a²=b²+c²
∴A=90º
∵sinA=2sinBsinC
∴2sinBsinC=1
∵cos(B-C)-cos(B+C)
=cosBcosC+sinBsinC-(cosBcosC-sinBsinC)
=2sinBsinC
∴cos(B-C)-cos(B+C)=1
又B+C=90º,cos(B+C)=0
∴cos(B-C)=1
∴B-C=0
∴B=C
∴三角形为等腰三角形
综上,三角形为等腰直角三角形

直角三角形,正弦定理

sin²A=sin²B+sin²C
a^2=b^2+c^2 Rt△,而且∠A=90°
sinBsinC=1/2
sin²B+sin²C=1=2sinBsinC
(sinB-sinC)^2=0
∴sinB=sinC
∴∠B=∠C
∴是等腰Rt三角形

三角形是等腰直角三角形!角A=90°,角B=角C=45°
sinA=1,sinB=sinC=2分之根号2