在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2(1)求三棱锥S-ABC的体积(2)求二面角C-SA-B的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:12:34
x͒J@_Mפ}}@)
"?j!m|$-l!K637\y>\B'y>V\0}Rݏ$Bdk(,hyi̝$iH皥/+HCqC-<0;'ohDձ:lKf#z*_)w$GEZb@^B-j̒ˠņXqfN.϶3\օ6A6&v6ŎDZ?r47v[38'/sk#7#
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2(1)求三棱锥S-ABC的体积(2)求二面角C-SA-B的大小
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2
(1)求三棱锥S-ABC的体积
(2)求二面角C-SA-B的大小
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2(1)求三棱锥S-ABC的体积(2)求二面角C-SA-B的大小
1.由∠SAB=∠SAC=90°,得SA垂直AB和AC,即SA垂直平面ABC
在直角三角形ABC中,AC=1,BC=根号3,∠ACB=90°,AB=2
在直角三角形SAB中,SB=2倍根号2,∠SAB=90°,SA=2,
故三棱锥S-ABC的体积=SA*AC*BC/6=√3/6
2.,∠SAB=∠SAC=90°,所以∠CAB即所求二面角C-SA-B的平面角
在直角三角形ABC中,cos∠CAB=1/2,∠CAB=60°为所求
在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形.∠BAC=90°,O为BC中点,求证SO⊥平面ABC
如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=根号3,SB=根号23,求二面角S-BC-A正切值
..在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2 证明:SB⊥BC求二面角A-AB-S的大小 求直线AB与平面SBC所成角的正弦值.
在三棱锥S-ABC中,已知AB=AC,O是BC的中点,平面SAO 垂直 平面ABC 求证 角SAB=角SAC
在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的的重心,若BC=6,则PQ的长为
在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的的重心,若BC=6,则PQ的长
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2(1)求三棱锥S-ABC的体积(2)求二面角C-SA-B的大小
高一空间几何问题 高手快来帮忙啊~在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90度,且AC=BC=5,SB=5√5.(1)证明:SC⊥BC(2)求侧面SBC与底面ABC所成二面角的大小(3)求三棱锥的体积V
在三棱锥S-ABC中,E,F,G分别是△SBC,△SAC,△SAB的重心.求证:平面EFG//平面ABC
在正三棱锥S-ABC中,侧面SAB,侧面SAC,侧面SBC两两互相垂直,侧棱SA=2根号3,则正三棱S-ABC外接球的表面积是
已知在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的重心,则BC与平面APQ的位置关系是
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.求证:(1)SO⊥平面ABC(2)求二面角A-SC-B的余弦值空间有图
求数学帝回答在三棱锥S-ABC中,已知AB=AC O是BC的中点,平面SAO⊥平面ABC求证:角SAB=角SAC
在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,角BAC=90°,O为BC的重点.(1)、证明:SO垂直面ABC.(2)、求二面角A-SC-B的余弦值.
在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2 证明:SB⊥BC求二面角A-AB-S的大小 求直线AB与平面SBC所成角的正弦值.
在三棱锥S-ABC中,侧面SBC垂直底面ABC,角BAC等于90度,侧面SAB与侧面SAC都是边长为2的等边三角形....在三棱锥S-ABC中,侧面SBC垂直底面ABC,角BAC等于90度,侧面SAB与侧面SAC都是边长为2的等边三角形.1)求
在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,求异面直线SC与AB所成的角的余弦值.
在三棱锥S-ABCD中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=√13,SB=√29.(1)证明:SC⊥BC.(2)求侧面SBC与底面ABC所二面角的大小