求下列数列的极限 就是这些= =

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 16:38:49
求下列数列的极限 就是这些= =
xWR~nF3<X q!RʏX Iffؾ0Zytbp_ӑ'/ޟ(?GL^^''g&Ó?iNj!`6=U$<Fp8::LG1ip0 Ѿhxx:z#?O裰K/6 > Fh8cF,4H,KqAKm;[8cw]t#nN}K^tS^sSwS˳x^eK%o5:Uu좷ݜ=r*K\M|mǞ9Ƕpsc;H0rG,}NHa&XW~|~^:坝s;c缃+X}Ֆk–X-/M{N$>as JwO Ϳ{^,: /Į.((UnU{w;rIUky(^i.wũ_Ta _VXz0o8K=ʒ1N,~y)KcVsY*x? i]CFw$\ )n©,>.OWJBRZ+;OzaN{ʙR|٭(Edbˋ5v$(tˀgNs"qE@(:ŷ^i@z  H>3n\C١ ;`2_A=c& @q^COJPTL`izW:)!|(PmT4KөGDOPjkg jKB*tTz3d(m+ޭFcvG]I.>I[>Ư ;eTQRO zNn+_'ga(vz|E{o+S&`+ߛ-hX9_M<&UPjN5{Cu5B xg/Z{vZhǭkCj 7Y2U靴,>szj]-n%ꧧl#zpx RC^%h S,bmBo "Zu/NeOq_;<9mJ2fPTV=`.vZlON`锷]I)A~\;xzdDgwQ$?#~0dCo7{~d(F U7QċQ'k2QLh7ŭ005 p PV;%b)t(NC"rdμUi߱l5.df}l 3A`CS} + {)i/pV6Y1Psl7:ukĖF?@Yqfi?LrHC/_{ TR0G\Wi5<*#|VTz ]z^=QB|Z!4DI"iyG- Iwus>7ڻt*uVe5|*RN~FB. .v /

求下列数列的极限 就是这些= =
求下列数列的极限
就是这些= =

求下列数列的极限 就是这些= =
这几个题目很远代表性,你平时作业之所以不会做,可能是因为你基本的东西部知道,其实书本上有一些我下面解题用到的某个函数在某种情况下的极限,把这些记清楚,且要知道一些基本的形式如何变化,一般的求极限就没有问题了!下面是这些题的解题过程,我写了很久,希望你自己下去总结研究一下,
一:有题目知该式子满足使用诺必达法则的条件,因此,对函数f分子分母分别求一阶倒数得到4X^3/(3X^2)=4X/3 由于X趋于1,故极限为4/3
二:将被积函数分子分母同时乘以√(x+Δx) + √(x 化简之后代入Δx=0得到极限为1/(2√x)
三:本题目与第二题一样,先将函数分子分母同乘以√(2x+1) + 3化简之后代入x=4得到极限为无穷大
四:本题目与二、三解法一样,将函数分子分母同乘以1+√(tanx+1)化简之后代入x=0得到极限为-2
六:分子分母(这里将分母看做1)同时乘以√(x^2+x+1) + √(x^2-x+1)将得到的结果化简,化简后得到2x / ( √(x^2+x+1)+√(x^2-x+1) )将式子分子分母同时除以x,分子变为2,分母变为√(1 + 1/x +1/x^2 ) + √(1 - 1/x + 1/x^2) 因为x为无穷大,所以式子√(1 + 1/x +1/x^2 ) + √(1 - 1/x + 1/x^2)中所有含有x的项均趋于0,此时我们可以直接将其视为0,得到√(1 + 1/x +1/x^2 ) + √(1 - 1/x + 1/x^2)趋于2,所以整个极限为1/2
七:因为sinx函数有界,当x趋于0时,就可以用无穷小乘以一个有界函数的值仍为无穷小这一结论来做,即本题极限为0
八:这种题目先将分母乘以2(再将整个函数乘以0.5就可以保证函数值和原来一样),得到的形式正是高数课本上面的标准形式:当x趋于0时,sinx/x的极限为1,类似,所以极限为0.5
九:当x趋于0时,1-cosx可以视为x^2/2的高阶无穷小,tanx为x的高阶无穷小,即分子变为x^2/2,分母变为x^2,所以极限为1/2
十:因为x趋于0时,2x也趋于0,故tan2x可以看做2x,则函数的分母就可以写成2x,再将变换后的函数分子分母同时乘以√(1+x) + 1得到极限为1/2
十一:(2x+1)/(2x-1)化简为1+ 1/(x-0.5),令t= x-0.5 (x趋于无穷,故t也趋于无穷),即有x=t+0.5 ,所以原函数可以写为 (1+ 1/t)的(t+0.5)次方,可以写为:(1+ 1/t )^t 乘以(1+ 1/t)^0.5 ,当t趋于无穷时,(1+ 1/t )^t 的极限为e,(1+ 1/t)^0.5 的极限为1,将两个极限相乘,就得到要求的极限,结果为e
十二:已知x趋于无穷时,(1+1/x)的x次方的极限为e(课本上有),固有(1-1/x)的x次方当x趋于无穷的极限为1/e,(所有这种类型的题目都用这种解法).而且原函数的极限可以看做是(1-1/x)的x次方的极限的k次方(极限的性质之一),故极限为1/e^k

大一的吧,平时课逃的不少吧不好意思。。。我上的高职,相当于高二= = 从不逃课= =平时做的题感觉也木有这么难啊, 怎么寒假作业觉得这么难啊 = = 平常例题也找不到这种的= =这就是大一必上的高等数学,你如果真相搞懂的话,去借一本大一上学期的高等数学看看就行了.不是很难,你只需要看第一章的内容就可以解答你列出的题目了.大一= =其实,如果老师一讲,喔,很容易嘛= = 老师不讲就难得要死...

全部展开

大一的吧,平时课逃的不少吧

收起

= 3/2 【分子,分母是无限项和时。先分别求有限项和,再算极限】 等比数列求和公式~