当x变化时,求分式:分子6x²+12x+10,分母:x²+2x+2的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 07:46:23
当x变化时,求分式:分子6x²+12x+10,分母:x²+2x+2的最小值
xSN@JVq1>ڋfbj(HHUBLݐS~8s}3f,VK7y)^ tk?xИ7ѡw[ݽ݂U230'8xrM<^@`5jٴMt8U#OgAm#< |SK2"7pnگ T}ZL],#mF.ks%K8j37X3%}4=5̐u *6;JQDžD#~>dǿúx#ufA:3 SƎϕЖ9UJ+/BlM(#T!|)64kzj =w5Î} "擪6 %x66a#ղfrA9|`uk9~ wX΂bs渼˼\z ydow 9

当x变化时,求分式:分子6x²+12x+10,分母:x²+2x+2的最小值
当x变化时,求分式:分子6x²+12x+10,分母:x²+2x+2的最小值

当x变化时,求分式:分子6x²+12x+10,分母:x²+2x+2的最小值
不需要那么麻烦.
原式=(6x²+12x+12-2)/(x²+2x+2)
=(6x²+12x+12)/(x²+2x+2)-2/(x²+2x+2)
=6-2/(x²+2x+2)
则当x²+2x+2最小时原式最小.
则x=-1,原式最小值为4.

令y=(6x²+12x+10)/(x²+2x+2)
yx²+2xy+2y=6x²+12x+10
(y-6)x²+(2y-12)x+2y-10=0
y≠6
以x为未知数的一元二次方程有解,则有:
△>=0
4(y-6)²-8(y-6)(y-5)>=0
(y-6)(4-y)>=0
4<=y<=6
所求的最小值=4,(此时x=-1)

y=((6x²+12x+12-2)/(x²+2x+2)
=3-2/(x²+2x+2)
=3-2/[(x+1)²+1]
(x+1)²+1≥1
0<2/[(x+1)²+1]≤2
-2≤-2/[(x+1)²+1<0
3-2≤3-2/[(x+1)²+1<3+0
'所以最小值是1

原式=6(x²+2x+2)-2/(x²+2x+2)=6-(2/x²+2x+2),当x²+2x+2取最小值时,2/x²+2x+2有最大值,则6-(2/x²+2x+2)有最小值,当x=-b/2a=-1时,x²+2x+2最小值=1,则2/x²+2x+2,最大值=2,6-(2/x²+2x+2)最小值=4