f(x)=2sin(2x-π/3)+1,且关于x的方程f(x)-m=2,在x∈【π/4,π/2】上有解,求m的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 19:54:16
f(x)=2sin(2x-π/3)+1,且关于x的方程f(x)-m=2,在x∈【π/4,π/2】上有解,求m的取值范围.
x)KӨд5*0=ߠomdǔx>ٴWt

f(x)=2sin(2x-π/3)+1,且关于x的方程f(x)-m=2,在x∈【π/4,π/2】上有解,求m的取值范围.
f(x)=2sin(2x-π/3)+1,且关于x的方程f(x)-m=2,在x∈【π/4,π/2】上有解,求m的取值范围.

f(x)=2sin(2x-π/3)+1,且关于x的方程f(x)-m=2,在x∈【π/4,π/2】上有解,求m的取值范围.
f(x)-m=2sin(2x-π/3)+1-m=2 2sin(2x-π/3)=m+2-1=m+1
x∈【π/4,π/2】 2x-π/3∈【π/6,π/2】
1≤2sin(2x-π/3)≤2 1≤m+1≤2
∴ 0≤m≤1

[0,1]