已知函数f(x)=log1/2(ax^2+3x+a+1) 对于x∈【1,2】不等式(1/2)^f(x)-3x≥2恒成立,求正实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:50:53
已知函数f(x)=log1/2(ax^2+3x+a+1) 对于x∈【1,2】不等式(1/2)^f(x)-3x≥2恒成立,求正实数a的取值范围
xSKoQ+$M!LyL5a4m2.tcv#tC*h@@ X1 sʿSiL.Lfq9G })C|H'\x#pRxOpm]t@GI"1>^HՒ0p3K76ÓdYD}}fN{K>d><1(/=7 VY;`}m[xȏz#5ֶ]B{3f4 3bҚ񱵃v@Y/GrrMCs~<+ca5ä+Ӓ 2X"T%/6AijE{q^[;>@FY[WdT᱂hd8sfځCcs 4s[XD'P;'80,F(=.ҾJ3z!7$ž9Y-GՄ[ Iσ(Zƿ?izm3зb7{*~ܐY%XnJA*48/Lj;*O ,qUN5O4\[Y.,

已知函数f(x)=log1/2(ax^2+3x+a+1) 对于x∈【1,2】不等式(1/2)^f(x)-3x≥2恒成立,求正实数a的取值范围
已知函数f(x)=log1/2(ax^2+3x+a+1) 对于x∈【1,2】不等式(1/2)^f(x)-3x≥2恒成立,求正实数a的取值范围

已知函数f(x)=log1/2(ax^2+3x+a+1) 对于x∈【1,2】不等式(1/2)^f(x)-3x≥2恒成立,求正实数a的取值范围
(1/2)^f(x)-3x=(1/2)^[log‹1/2›(ax²+3x+a+1)]-3x=ax²+3x+a+1-3x=ax²+a+1≧2
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,2]在其对称轴的右侧,为了使不等式
y=ax²+a-1≧0 在区间[1,2]内恒成立,必须使y(1)=2a-1≧0,即a≧1/2.这就是a的取值范围.
祝你学习天天向上,如果满意请点击选为满意答案.

(1/2)^f(x)-3x=(1/2)^[log‹1/2›(ax²+3x+a+1)]-3x=ax²+3x+a+1-3x=ax²+a+1≧2
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,...

全部展开

(1/2)^f(x)-3x=(1/2)^[log‹1/2›(ax²+3x+a+1)]-3x=ax²+3x+a+1-3x=ax²+a+1≧2
即已知不等式 ax²+a-1≧0 在区间[1,2]内恒成立,设y=ax²+a-1,由于a是正实数,故y的图像
是一条开口朝上的抛物线,其顶点为(0,a-1),故区间[1,2]在其对称轴的右侧,为了使不等式
y=ax²+a-1≧0 在区间[1,2]内恒成立,必须使y(1)=2a-1≧0,即a≧1/2. 这就是a的取值范围。
请指教

收起