设函数f(x)=cos(2x-π/3)+2sin^2(x+π/2) 求f(x)的最小正周期和对称轴方程当x∈【-π/3,π/4】时,求f(x)的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 02:58:23
设函数f(x)=cos(2x-π/3)+2sin^2(x+π/2) 求f(x)的最小正周期和对称轴方程当x∈【-π/3,π/4】时,求f(x)的值域
xTn@~*RIl/Fv. S8)TJEh$^dW`MhP{ hgϟgfG-f{nѴ^B3 nzCI:+0% ;+sA}ܩx`ͧxlUԛe{xϽJEt)b:H<\=!,jbV :ˋsuut]%~l-Z,W.ϱbP. &c9 <Ayx>q,浌uK,A(CΒ,6d#( P,D|Y^W8FH18`9g p\+)LZ1"MȜi˜"H6H@D Ȣ4Rf49ljO ;zSk}oG;vJeݢώ{Fw&͇1a#&r@D5],OfC/N!Ei %M˒Lx0Y4F;XЧ+clqeslQ8-/x"@ KW5ONCbxY,Q:]mN+%)ABKrL]˃.AVCD\>/S_HV

设函数f(x)=cos(2x-π/3)+2sin^2(x+π/2) 求f(x)的最小正周期和对称轴方程当x∈【-π/3,π/4】时,求f(x)的值域
设函数f(x)=cos(2x-π/3)+2sin^2(x+π/2) 求f(x)的最小正周期和对称轴方程
当x∈【-π/3,π/4】时,求f(x)的值域

设函数f(x)=cos(2x-π/3)+2sin^2(x+π/2) 求f(x)的最小正周期和对称轴方程当x∈【-π/3,π/4】时,求f(x)的值域



这是高一的题目吧,复习加油,

1、f(x)=cos2xcosπ/3+sin2xsinπ/3+1-cos(2x+π)
=cos2x*1/2+sin2x*√3/2+1+cos2x
=cos2x*3/2+sin2x*√3/2+1
=√3(cos2x*√3/2+sin2x*1/2)+1
=√3(cos2xcosπ/6+sin2xsinπ/6)+1
=√3cos(2x-π/6)+1
所以T...

全部展开

1、f(x)=cos2xcosπ/3+sin2xsinπ/3+1-cos(2x+π)
=cos2x*1/2+sin2x*√3/2+1+cos2x
=cos2x*3/2+sin2x*√3/2+1
=√3(cos2x*√3/2+sin2x*1/2)+1
=√3(cos2xcosπ/6+sin2xsinπ/6)+1
=√3cos(2x-π/6)+1
所以T=π
对称轴则cos(2x-π/6)=±1
2x-π/6=kπ
x=kπ/2+π/12
2、
-π/3<=x<=π/4
-5π/6<=2x-π/6<=π/3
所以最大是cos0=1
最小是cos(-5π/6)=-√3/2
所以值域是[-1/2,√3+1]

收起