已知等差数列{an}的前n项和为Sn,满足关系lg(Sn+1)=n (n∈N*).试证明数列{an}为等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 07:25:56
已知等差数列{an}的前n项和为Sn,满足关系lg(Sn+1)=n (n∈N*).试证明数列{an}为等比数列
xJ@_%˴M`&{!nPt) TiҍTV&3IWy'EqM2;9*e:GF]!qzd]}>Dc i'ǪM (s$l&ao6[@Yؐ-}FlaxߨmH4!QQ A l#lj7{Kb]UaE uޢ#淿yiK3_ȕi䉩gp>z^< pbj/pD%'hgZ\9?/` KLB%8h aJ| LFʚT*6Ég!|ݗvk)~S Lzk3?(

已知等差数列{an}的前n项和为Sn,满足关系lg(Sn+1)=n (n∈N*).试证明数列{an}为等比数列
已知等差数列{an}的前n项和为Sn,满足关系lg(Sn+1)=n (n∈N*).试证明数列{an}为等比数列

已知等差数列{an}的前n项和为Sn,满足关系lg(Sn+1)=n (n∈N*).试证明数列{an}为等比数列
由lg(Sn+1)=n可得:Sn=10^n-1.
n=1时,a1=S1=9,
n≥2时,an= Sn- S(n-1)= 10^n-1-(10^(n-1)-1)= 9×10^(n-1)
所以an= 9×10^(n-1)(n∈N*)
∴数列{an}是个首项为9,公比为10的等比数列.

10^n=Sn+1
Sn=10^n-1,an=Sn-S(n-1)=9*10^(n-1)
a(n+1)/an=10
数列{an}为等比数列
,公比10,由lg(a1+1)=1得首项a1=9

Sn+1=10^n
所以 Sn=10^n-1
an=10^n-1-(10^(n-1)-1)=9*10^n
所以 an/an-1=10;
是等比数列
10^n表示 10 的n次方