在三角形ABC中,如果角A是不等于60°的锐角,点D、E分别在AB、AC上,且角DCB等于角EBC等于1\2角A,探究:满足上述条件的图形中是否存在等边四边形,并证明你的结论.证明过程要写出来.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 20:19:28
在三角形ABC中,如果角A是不等于60°的锐角,点D、E分别在AB、AC上,且角DCB等于角EBC等于1\2角A,探究:满足上述条件的图形中是否存在等边四边形,并证明你的结论.证明过程要写出来.
xV_OG*RTξ[{Oj_+Uw6TdH G(ihCclQй]9lTjbf淳3(==[:JκHvWڃve/_;K`'ܞ=ޔftdE"+^ة-*uE%ߑ/>n]jV=kǛ^%XyM > DhUVx'GhmmnQ۟qWش^"N{t)vu%sz{la<;`ѤU,|CU'! It橒lQXi)X: eJIa.d>lJҐHҥ8IAS[ Qg D0@E" ;CPMŐ4j@MLbxT 405EM6bagTT0¤!hŜ`w&+ EJ(z'o=#lxMlybtu==^0QQl~CcOdOѤs@@aLo 1Ei$֗ ot\*2|Ǥn?s>wDUc7'"p|lX:n&c&iAd G9s̚#`gf"b4fx3_ bFXDsblڌq(G)DxZWbsrx8QAqpg:OzaםU4ޔf<`*+CSZK\o٫K~jW~:@(0CPQE0nejY>xC]X2 Jf?ɬ:;M9@!m?30%}Nshegfhnsgo0ݥ3 LLd.5'C1"iARd2ތ\sB<(~Xt]~ѱwJop5>;{Ts]__h?

在三角形ABC中,如果角A是不等于60°的锐角,点D、E分别在AB、AC上,且角DCB等于角EBC等于1\2角A,探究:满足上述条件的图形中是否存在等边四边形,并证明你的结论.证明过程要写出来.
在三角形ABC中,如果角A是不等于60°的锐角,点D、E分别在AB、AC上,且角DCB等于角EBC等于1\2角A,探究:满足上述条件的图形中是否存在等边四边形,并证明你的结论.
证明过程要写出来.

在三角形ABC中,如果角A是不等于60°的锐角,点D、E分别在AB、AC上,且角DCB等于角EBC等于1\2角A,探究:满足上述条件的图形中是否存在等边四边形,并证明你的结论.证明过程要写出来.
存在 四边形DBCE
延长CD到M 使BM⊥CM
作CN⊥OE于点N
∵BM⊥MO CN⊥CE
∴∠BMO=∠ONC=∠CNE=90°
∵∠DOB与∠NOC为对顶角
∴∠DOB=∠NOC
∵∠OBC=∠OCB
∴BO=DO
∵在Rt△MOB与Rt△NOC中
∠BMO=∠CNO
∠MOB=∠NOC
OB=OC
∴Rt△MOB≌Rt△NOC(AAS)
∴MB=NC
∵∠MDB是△BDO外角
∴∠MDB=∠ABE+∠DOB
∵∠DOB=∠A(2已证)
∴∠MDB=∠ABE+∠A
又∵∠BEC是△ABE外角
∴∠BEC=∠A+∠ABE
∴∠MDB=∠NEC
∵在Rt△MDB与Rt△NEC中
MB=NC
∠BMD=∠CNE
∠MDB=∠NEC
∴Rt△MDB≌Rt△NEC(AAS)
∴BD=EC
∴四边形DBEC是等对边四边形

设BE,CD的交点为O,ADOE是满足已知条件的唯一的四边形。假设其为等边四边形,则
∠A=∠DOE√
而∠BOC=∠DOE(对顶角)∠.BOD=∠COE,=∠EBC+∠DCB=∠A√
此时,4∠A=360度, ∠A=90度。与一种条件相饽。
故此证明:满足上述已知条件的图形中是不可能存在等边四边形的。...

全部展开

设BE,CD的交点为O,ADOE是满足已知条件的唯一的四边形。假设其为等边四边形,则
∠A=∠DOE√
而∠BOC=∠DOE(对顶角)∠.BOD=∠COE,=∠EBC+∠DCB=∠A√
此时,4∠A=360度, ∠A=90度。与一种条件相饽。
故此证明:满足上述已知条件的图形中是不可能存在等边四边形的。

收起

延长CD到M 作BM⊥CM,
作CN⊥OE于点N
∵BM⊥MO CN⊥CE
∴∠BMO=∠ONC=∠CNE=90°
∵∠OBC=∠OCB
∴BO=DO
在△MOB和△NOC中,
∠BMO=∠CNO,
∠MOB=∠NOC,
OB=OC。
∴△MOB≌△NOC(AAS)
∴MB=NC
∵∠MDB=∠ABE+...

全部展开

延长CD到M 作BM⊥CM,
作CN⊥OE于点N
∵BM⊥MO CN⊥CE
∴∠BMO=∠ONC=∠CNE=90°
∵∠OBC=∠OCB
∴BO=DO
在△MOB和△NOC中,
∠BMO=∠CNO,
∠MOB=∠NOC,
OB=OC。
∴△MOB≌△NOC(AAS)
∴MB=NC
∵∠MDB=∠ABE+∠DOB,
∠DOB=∠A
∴∠MDB=∠ABE+∠A
又∵∠BEC=∠A+∠ABE
∴∠MDB=∠NEC
在△MDB和△NEC中,
∠BMD=∠CNE,
∠MDB=∠NEC,
MB=NC。
∴△MDB≌△NEC(AAS)
∴BD=EC
∴四边形DBCE是等对边四边形

收起