在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是答案我已经

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:26:20
在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是答案我已经
xS[n@J?bG$0iSȃ@%UPG5 -b=ܹwnnwu̱-^SVX}ݰqG|љ`10`n;=d/[;2gSVu;q3^31=Q.n_~XjR_7cf5@b{ w(Yzz}t4{79ܗb^l"t'Pu]~P{P̨64ν JpAc_!_%Hc&rT"|@d2awIp>.Th R ?ACd΍퉖Y7C2#hdz;W!/m-/B@!J"&$$W[7XS,r׶Њks Z pތI @igS4ר;oiTԯ8*˾-'|w

在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是答案我已经
在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是
答案我已经知道了,但是怎么证明出来的不理解,具体的过程麻烦的话可以不写,主要是思路,用了什么方法,望高人指点,万分感谢

在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是答案我已经
设三棱锥为O-ABC,AO⊥BO,AO⊥CO,BO⊥CO,
AO=a,BO=b,CO=c,在平面ABC内,过A作AD⊥BC,连接OD,
则OD是AD在平面OBC的射影,所以OD⊥BC,AO⊥OD.
在直角三角形AOD中,由勾股定理有:a^2+OD^2=AD^2,
在直角三角形BOC中,由勾股定理有:b^2+c^2=BC^2.
所以 1/4*BC^2*(a^2+OD^2)=1/4*BC^2*AD^2=(1/2*AD*BC)^2,
即 1/4*(b^2+c^2)*a^2+1/4*BC^2*OD^2=(1/2*AD*BC)^2,
(1/2*ab)^2+(1/2ac)^2+(1/2*OD*BC)^2=(1/2*AD*BC)^2,
即侧面OAB的面积,侧面OAC的面积,侧面OBC的面积之平方和
等于底面的面积的平方.

在平面几何里有勾股定理:设△ABC的两边AC,BC互相垂直,则AC2+BC2=AB2.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面与底面面积的关系,可以得出的正确结论是:设三棱锥A-BCD三个侧面ABC,AC 在平面几何里,有勾股定理“设三角形ABC的两边AB、AC互相垂直,则AB的平方加上AC的平方等于BC的平方”,拓 在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是答案我已经 在平面几何里,有勾股定理:设三角形ABC的两边AB,AC互相垂直,则AB^2+AC^2=BC^2.扩展到空间,类比平面几何的勾股定理,研究三菱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“三菱锥 在平面几何里有勾股定理,类比勾股定理研究三棱锥的侧面面积与底面面积间的关系,可得出:若三棱锥的三条棱两两相互垂直,则.后面填什么?请证明 在平面几何里,有“若△ABC的三边长分别是a,b,c,内切圆半径为r,则三角形面积为S△ABC=1/2(a+b+c)r,类比上述结论,拓展到空间, 在平面几何里,有“若△ABC的三边长分别是a,b,c,内切圆半径为r,则三角形面积为S△ABC=1/2(a+b+c)r,类比上述结论,拓展到空间, 一道看似简单,实际很有难度的平面几何题!设三角形abc内有任意一点p,求证ab+bc+ac>pa+pb+pc. 学渣误闯 没水平别瞎戳1.在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以 类比平面几何中的勾股定理类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足:AB^2+AC^2=BC^2,若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则 在平面几何中,对于Rt△ABC,∠C=90°,设AB=c,AC=b,BC=a则 (1)a^2+b^2=c^2,(2)Cos^2A=Cos^2B=1在平面几何中,对于Rt△ABC,∠C=90°,设AB=c,AC=b,BC=a则(1)a^2+b^2=c^2,(2)Cos^2A=Cos^2B=1(3)Rt△ABC的外接圆半径为r=根号(a^2+b^2)/2把 一道数学类比推理的题已知平面几何中有勾股定理,若直角三角形abc的两边ab,ac互相垂直,则三角形的三边长满足ab的平方+ac的平方=bc的平方,类比上述定理,若三棱锥s-abc的三个侧面sab,sac,sbc两两 几道数学题——平面几何2、AD是△ABC的高,直径AD交外接圆于E,H是垂心.证明:HD=DE2、设四边形有一组对边相等,证明:这两边所在直线跟另两边中点的连线的 交角相等3、四边形ABCD中,设AD=BC,且M 有没有点特殊的方法证明余弦定理啊!什么向量法,平面几何法,勾股定理法,解析几何法有点太普通,又新颖点的方法吗 两向量的平行与平面几何里两线段的平行有什么区别? 在平面几何里,圆有如下性质,圆心与弦(非直径)中点的连线垂直于弦,类比此性质,球的相关性质是 在平面几何里有定理:三条平行线截两条直线,所得的对应线段成比例.类比到空间,可以得出的正确结论是…… 如图,Rt△ABC中,∠C=90°,∠A=30°,点D、E分别在AB、AC上,且DE⊥AB,若DE将△ABC分成面积相等的两部分,求CE与AE长度的比值.没学过什么三角函数,这道题是在勾股定理的练习题里的,有什么别的方法