已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 09:54:24
已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方
xTn@~vM]##p1*V9VLiD@SUU@B4*>LuS^Yڱ+ofMo_'E^r6ߐbv8/oh c].HS80EQo_=pW*6#<C DGQwv6|ܞ\ OO}]. v5p'$*Y*l*)~Uυ+-) yd8n?oZ:ܙ~<_o5F5Of0+Xπ )1g$4K};dX9Uz{ )T0ZSRV4g5-y>?N8R D+3WyøCkxACrb-PBQ3#@ &F9'Pfn'`˝]qsUL!ڻl80=p]26VI!&cµ[#_]A!o8dJq;B~ɠhĩ4ef&wהA024bWL\AWvV,r#.ݔOapz~69DƎK?Zi6_/_)}

已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方
已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方

已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方
已知数列an的前n项和为Sn,已知a1=a,a(n+1)=2Sn+4^n(N为正整数)
(1)设bn=Sn-4^n,求证:数列bn是等比数列
(2)若a=1,求数列an的前n项和Sn
(3)若a(n+1)≥an,n为正整数,求实数a的取值范围
【解】
(1)
a1=a
a2=2S1+4^1=2a+4
a(n+1)=2S(n)+4^n
a(n)=2S(n-1)+4^(n-1),n>=2
a(n+1)-a(n)=2a(n)+3*4^(n-1)
a(n+1)=3a(n)+3*4^(n-1)
a(n+1)-3*4^n=3[a(n)-3*4^(n-1)]
{a(n)-3*4^(n-1)}是等比数列,首项a2-12=2a-8,公比3
a(n)-3*4^(n-1)=(2a-8)*3^(n-2)
a(n)=3*4^(n-1)+(2a-8)*3^(n-2)
n>=2
S(n)=a+3[4+4^2+4^3+...+4^(n-1)]+(2a-8)(1+3+3^2+3^3+...+3^(n-2)]
=a+[4^n-4]+(a-4)[3^(n-1)-1]
=4^n+(a-4)*3^(n-1)
当n=1,S(1)=a也适合
∴S(n)=4^n+(a-4)*3^(n-1)
b(n)=S(n)-4^n=(a-4)*3^(n-1)显然是等比数列
(2)
由(1)知
S(n)=4^n+(a-4)*3^(n-1)=4^n-3^n
(3)
a1=a
a2=2a+4
a2>=a1,2a+4>=a,a>=-4
n>=2
a(n)=3*4^(n-1)+(2a-8)*3^(n-2)
a(n+1)=3*4^n+(2a-8)*3^(n-1)
a(n+1)>=a(n)
3*4^n+(2a-8)*3^(n-1)>=3*4^(n-1)+(2a-8)*3^(n-2)
9*4^(n-1)+4(a-4)*3^(n-2)>=0
a-4>=-9*4^(n-2)/3^(n-2)=-9*(4/3)^(n-2)
-9*(4/3)^(n-2)是减函数,故只需满足
a-4>=-9(4/3)^(2-2)=-9,a>=-5
∴a>=-4

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公 已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式 已知数列{an}的前N项和为sn a1=1an+1=sn+3n+1,求数列{an}的通项公式 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列 已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式 已知Sn为数列的前n项和,a1=2,2Sn=(n+1)an+n-1,求数列an的通项公式 已知数列《an>的前n项和为sn,a1=2,na=sn,求s2011 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an 已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn 已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差