试证明:不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 00:57:58
试证明:不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根?
xR=OP+/11@Ц&p!0cL1 F#PJ:/ɣ".Mz﹧sjUamKvhڒclnP2#g*Rj"_*޳'DttEqCs/ :Jh2>Iv" ?%l6HP a1+4ɚSL=Lm0 5˟Bd|7}Fȧ=XF`_-S:K_RaK+Ek2ţercst.37(㩝ŠE1GaZ&+!:T $3m&.sB\LSX"̫:" tP󿬌4N5ć&q ].f7!N

试证明:不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根?
试证明:不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根?

试证明:不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根?
2x²-(4m-1)x-m²-m=0
根的判别式:(4m-1)²+8(m²+m)>0
24m²+1>0
所以根的判别式>0
所以总有两个实数根
证毕

这要说明判别式大于0就可以了。判别式通式是b²-4ac.

△=[-(4m-1)]²-4*2*(-m²-m)
=16m²-8m+1+8m²+8m
=24m²+1>0
∴方程有两个不相等的实数根

根的判别式为:(4m-1)²-4×2×(-m²-m)=16m²-8m+1+8m²+8m=24m²+1≥1
所以不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根

△=b²-4ac
=[-(4m-1)]²-4*2*(-m²-m)
=16m²-8m+1+8m²+8m
=24m²+1
因为m² >或=0
所以24m²+1 >或= 1
所以不论m为何值,方程2x²-(4m-1)x-m²-m=0总有两个不相等的实数根。