过p(1.2)的直线l,与圆x²+y²-4x-2y-11=0交于M,N两点,若MN=2根号15,求l的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:38:44
过p(1.2)的直线l,与圆x²+y²-4x-2y-11=0交于M,N两点,若MN=2根号15,求l的方程
xRMKA+B86C_㥫Jt(x]--"̢ZQMؙNfwƏ:vy}Ev?Q RY).X VS)썉Uj(AgN d*,}0i&%BU}[?L#~ oTIS8&.(\ӊTe{r ω@g$E+w.J"I 00KkR C1. \*]"au3!@^ŜߏBV+GjER)"0蕢!Uy#&36<'~vo]&gSSɉ1 a!{Q-E1*#C=;*%:wx{XBG HdY,g3<rz_D

过p(1.2)的直线l,与圆x²+y²-4x-2y-11=0交于M,N两点,若MN=2根号15,求l的方程
过p(1.2)的直线l,与圆x²+y²-4x-2y-11=0交于M,N两点,若MN=2根号15,求l的方程

过p(1.2)的直线l,与圆x²+y²-4x-2y-11=0交于M,N两点,若MN=2根号15,求l的方程
x²+y²-4x-2y-11=0
∴ (x-2)²+(y-1)²=16
∴ 圆心是C(2,1),半径R=4
设圆心到直线L的距离是d
利用垂径定理,
d=√[R²-(MN/2)²]
=√(16-15)
=1
直线L过点P(1,2)
(1)直线L的斜率不存在,
则L:x=1
此时,圆心C(2,1)到L的距离d=1
∴ x=1满足题意.
(2)直线L的斜率存在
则L:y-2=k(x-1)
即 kx-y+2-k=0
∴ 圆心C(2,1)到L的距离d=|2k-1+2-k|/√(k²+1)=1
即 |k+1|=√(k²+1)
∴ k²+2k+1=k²+1
∴ k=0
∴ L:y=2
综上所述,L的方程是x=1和y=2