求极限lim(x→0)(tanx-sinx)/sin³x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:27:20
求极限lim(x→0)(tanx-sinx)/sin³x
x){ټƗ3'djT]*f6:*ChUۺNdW۞bRZ#<;hX؀9O?oC)=ICM} C5O؂ \q%P%qFO{=_tF6VZ v:%  Ov/{f:!

求极限lim(x→0)(tanx-sinx)/sin³x
求极限lim(x→0)(tanx-sinx)/sin³x

求极限lim(x→0)(tanx-sinx)/sin³x
tanx-sinx=sinx/cosx-sinx
=[sinx(1-cosx)]/cosx
(tanx-sinx)/sin3x=(1-cosx/cosx)sin2x
=(1-cosx/cosx)/1-cos2x
=(1-cosx/cosx)/[(1-cosx)(1+cosx)]
=1/[cosx(1+cosx)]
lim趋向于0时应该=1/2

原式=(sinx/cosx-sinx)/sin3x
=(1/cosx-1)/(1-cos2x)
另t=cosx:
原式=(1/t-1)/(1-t^2)化简=1/(t+t^2)
x---->0,t--->1
所以原式极限:1/2