求极限:lim(x->0)(2x*cos2x-sin2x)/2x^3,我是这样考虑的:分母,分子同时除以2x=>lim(x->0)(cos2x-sin2x/2x)/x^2,'.' lim(x->0)sin2x/2x=1.'.上式 =lim(x->0)(cox2x-1)/x^2=>lim(x->0)(1/2)*4x^2/x^2=2我想问一下这样做哪里错了?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 12:12:51
求极限:lim(x->0)(2x*cos2x-sin2x)/2x^3,我是这样考虑的:分母,分子同时除以2x=>lim(x->0)(cos2x-sin2x/2x)/x^2,'.' lim(x->0)sin2x/2x=1.'.上式 =lim(x->0)(cox2x-1)/x^2=>lim(x->0)(1/2)*4x^2/x^2=2我想问一下这样做哪里错了?
xTR@ ;(9'T'EGL P1/J: 5@rŖfg{{f\JUV_ +ŻnQm<26jcs˪6a2 =FfHb`<{*XJ%] ݕ "]BM'ʨ#4% >0FHX.''\o625O;D}ҭ(Ȫ|E4 =lmbyif![xvq:xurU2!&+

求极限:lim(x->0)(2x*cos2x-sin2x)/2x^3,我是这样考虑的:分母,分子同时除以2x=>lim(x->0)(cos2x-sin2x/2x)/x^2,'.' lim(x->0)sin2x/2x=1.'.上式 =lim(x->0)(cox2x-1)/x^2=>lim(x->0)(1/2)*4x^2/x^2=2我想问一下这样做哪里错了?
求极限:lim(x->0)(2x*cos2x-sin2x)/2x^3,
我是这样考虑的:
分母,分子同时除以2x
=>lim(x->0)(cos2x-sin2x/2x)/x^2,
'.' lim(x->0)sin2x/2x=1
.'.上式 =lim(x->0)(cox2x-1)/x^2
=>lim(x->0)(1/2)*4x^2/x^2=2
我想问一下这样做哪里错了?还有什么时候可以用无穷小因子替换,或者可以直接用两个重要极限代进去,书上说,在加减法中等价无穷小替换是有条件的,我想问一下在什么情况下加减法中能用无穷小因子替换?

求极限:lim(x->0)(2x*cos2x-sin2x)/2x^3,我是这样考虑的:分母,分子同时除以2x=>lim(x->0)(cos2x-sin2x/2x)/x^2,'.' lim(x->0)sin2x/2x=1.'.上式 =lim(x->0)(cox2x-1)/x^2=>lim(x->0)(1/2)*4x^2/x^2=2我想问一下这样做哪里错了?
"在加减法中等价无穷小替换是有条件的"这个条件就是加减运算的两部分极限是存在的
像上式中
lim(x->0)(cos2x-sin2x/2x)/x^2,
这一步时
其实是计算
lim(x->0)(cos2x/x^2-sin2x/2x/x^2)
如果cos2x/x^2部分和sin2x/2x/x^2部分的极限都存在,那么就可以使用等价无穷小代换
(理论依据就是极限加减的条件了lim(a+b)=lima+limb前提是lima和limb都存在.)
显然x->0时这两部分极限都是∞,不存在的,所以这里不能用无穷小代换
一般情况下,如果把分子上的加减拆开得到的结果都会是∞,所以一般统一说加减法的时候不能用等价无穷小代换

完全错误的
等价无穷小代换只能用到连乘或连除的情况。加减不适合用。