求(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字但最后求的是个位数字

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:57:40
求(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字但最后求的是个位数字
xRN@H4>| ~!RA.F0bH Z O[b*<cΞ9gj,o"q~$H<&綇 a x&5AutyZtYd75dkYT`AHgY'bVGhPbt̲{{߂ka ~qקbhP {haSI@Α&;s# އVa>,'kwX yI}aVWȩDM]EC֛Ft?:nJ fiWٸ bC}E4Rx0)|z&4F m|ǡGt\:oc5ZPr&!)tzl o'l

求(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字但最后求的是个位数字
求(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
但最后求的是个位数字

求(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数字但最后求的是个位数字
(2-1)*(2+1)=2^2-1
然后基本上就是套平方差公式就可以了
最后结果是2^64-1+1=2^64
2^1个位数字是2,2^2的个位数字是4,2^3的个位数字是8,2^4的个位数字是6,2^5的个位数字是2,然后就是一直循环下去,周期是4,64/4=16,所以个位数字和2^4是一样的是6

首先,每个括号内的数都是奇数
其次,(2^2+1)=5
第三,个位数是5的奇数和任何奇数相乘,得到的个位数都是5
因此(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)的个位数是5
因此(2-1)(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的个位数是6