若实数x,y满足x^2+2xy+y^2-4=0,则x^2+y^2的最小值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:11:40
若实数x,y满足x^2+2xy+y^2-4=0,则x^2+y^2的最小值是
x){ѽyϦnЩ|{m+⌴**+tMl tv gm|n`>ݹN`|g}K_[Ya[ "5d5

若实数x,y满足x^2+2xy+y^2-4=0,则x^2+y^2的最小值是
若实数x,y满足x^2+2xy+y^2-4=0,则x^2+y^2的最小值是

若实数x,y满足x^2+2xy+y^2-4=0,则x^2+y^2的最小值是
x²+2xy+y²-4=0
(x+y)²=4
x²+y²=(x+y)²-2xy
=4-2xy x²+y²≥2xy -2xy≥-(x²+y²)
≥4-(x²+y²)
2(x²+y²)≥4
x²+y²≥2
所以当x=±1,y=±1时x²+y²有最小值2

做这种题目x和y关系是平等的,直接让x=y,最小值是2