1×2×3×……×100=12的n次方×M,求n最大值?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:32:23
1×2×3×……×100=12的n次方×M,求n最大值?
1×2×3×……×100=12的n次方×M,求n最大值?
1×2×3×……×100=12的n次方×M,求n最大值?
答案是 n = 48.
解题思路:
1至100 中,
3的1次方的倍数共有100/3, 整商 = 33个
3的2次方的倍数共有100/(3*3), 整商 = 11 个
3的3次方的倍数共有100/(3*3*3), 整商 = 3 个
3的4次方的倍数共有100/(3*3*3*3), 整商 = 1 个
所以 1*2*3……*99*100 的结果包含质因数 3 的次数是
33 + 11 + 3 + 1 = 48
2的1次方的倍数共有100/2, 整商 = 50个
2的2次方的倍数共有100/(2*2), 整商 = 25 个
2的3次方的倍数共有100/(2*2*2), 整商 = 12 个
2的4次方的倍数共有100/(2*2*2*2), 整商 = 6 个
2的5次方的倍数共有100/(2*2*2*2*2), 整商 = 3 个
2的6次方的倍数共有100/(2*2*2*2*2*2), 整商 = 1 个
所以 1*2*3……*99*100 的结果包含质因数 2 的次数是
50 + 25 + 12 + 6 + 3 + 1 = 97
2的97次方 = 4 的 48 次方 * 2,
3 的 48 次方 * 4 的 48 次方 = 12 的 48 次方
所以, 1*2*3……*99*100 的结果包含 因数 12 的次数 是 48.
1×2×3×……×100=93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
很难,奥赛题吧
0