1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E,求证CE=1/2BD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:25:50
1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E,求证CE=1/2BD
xŒj@_,$$;)d&Gج^ًvK*Hi |%n N*^jtYP}~7}daRts[DMخ&Gk`̇)/e1'@=l3۳wX ☲`C7lIVG^cz[Kنo^/+I'iu3zIDkҳ8 4^Vmedu:U*H hD!*:(}*iPaA)C oE"/ PADU }#Bj5zC.)]hxy}e&NSl-C[Nc6qo[^~lqΔ˓/<;;yX{|Z{:xĽIwva>h'JLj tt[n,7

1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E,求证CE=1/2BD
1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E,求证CE=1/2BD

1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E,求证CE=1/2BD
证明:延长CE交BA的延长线于F
因为∠ABE=∠ACF(等角的余角相等)
AB=AC
∠BAC=∠CAF=90
所以△ABD≌△ACF
所以BD=CF
因为BD既是角B的平分线也是CF边高线
所以△CBF是等腰三角形
CE=1/2CF
所以CE=1/2BD

如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC 如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若∠BAC=90°,求证:AD=BD修改∠BAC=30° 在Rt△ABC中,∠BAC=90°,AB=AC,∠DCA=∠DAC=15°求证:BD=AB如图 已知如图,在Rt△ABC中.∠C=90°,AD平分∠BAC,CD=1.5,BD=2.5,求AC的长 如图,在RT△ABC中,∠ACB=90°,AD平分∠BAC,BC=4,CD=2分之3,求AC的长. 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,并且AD=BD,求证AC=1/2AB 如图,在Rt△ABC中,∠C=90,AC=BC,AD平分∠BAC说明 AB=AC+CD 已知:如图 ,在RT△ABC中,∠C=90°,∠BAC=30°.求证:BC=1/2AB 如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB的距离是 如图 在rt△abc中 ∠bac=90度,ca=ba,角dac=角dca=15度,求证:ba=bd 如图,在Rt△ABC中,∠BAC=90°,做BC边上的高AD1,图中出现三个直角三角形;如图,在Rt△ABC中,∠BAC=90°,做BC边上的高AD1,图中出现三个直角三角形;又作三角形ABD1中AB边上的高D1 D2 ,这时图中便出现五不 如图在Rt△abc中,∠bac=90°,∠b=60°,如图,在Rt△abc中,∠bac=90°,∠b=60°,△ab‘c’可以由△abc绕点a顺时针旋转90°得到,连接cc‘,则∠cc'b'的度数为 如图在RT△ABC中,∠C=90°∠BAC=2∠B,AD是 ∠BAC的平分线请说明CD与BC的数量关系图片。 怎样证明△ADB是等腰三角形 如图,在Rt△ABC中,∠C=90°,∠BAC=60°,AM是∠BAC的平分线,且AM=15cm,求BC的长 如图,已知在Rt△ABC中,∠BAC=90°,AD是BC边上的高,BF平分∠ABC,交AD于点E.求证:△ABC是等腰三角形. 如图,在RT△ABC中, 如图,在Rt△ABC中, 如图,已知在RT△ABC分中,∠C=90° ∠B=30°,AE平分∠BAC,且CE=2CM 1.求BC的长 2.△ABE的边上的高