一道数学集合题已知集合A={〔x,y〕∣y=x-2,x∈N*},B={〔x,y〕∣a〔x^2-x+1〕,x∈N*},问:是否存在非零整数a,使A∩B≠¢?若存在,求出A∩B,若不存在,请说明理由?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:14:26
一道数学集合题已知集合A={〔x,y〕∣y=x-2,x∈N*},B={〔x,y〕∣a〔x^2-x+1〕,x∈N*},问:是否存在非零整数a,使A∩B≠¢?若存在,求出A∩B,若不存在,请说明理由?
xRAn@d5YtczJTU\J- E!6U8&8*Wg"uk}Y={Zz<:I|W4mEpjR^J͏Rw7BFI]<sˁ iҿKkn 8 Q﯉ؽKnw"ζwG̿7OVV#>k;d~ps5alERAΓ\Iz-I·%ꊦݢ~E}jAN?'4f mA1ʓ`}NHbND>X{hj 7u6T[G'G鏘hxw5ѹ'dG?AwZho^lς֊@C >0*;x21 X)ѷ=TDT6s21^~œ\g7ov~>:~

一道数学集合题已知集合A={〔x,y〕∣y=x-2,x∈N*},B={〔x,y〕∣a〔x^2-x+1〕,x∈N*},问:是否存在非零整数a,使A∩B≠¢?若存在,求出A∩B,若不存在,请说明理由?
一道数学集合题
已知集合A={〔x,y〕∣y=x-2,x∈N*},B={〔x,y〕∣a〔x^2-x+1〕,x∈N*},问:是否存在非零整数a,使A∩B≠¢?若存在,求出A∩B,若不存在,请说明理由?

一道数学集合题已知集合A={〔x,y〕∣y=x-2,x∈N*},B={〔x,y〕∣a〔x^2-x+1〕,x∈N*},问:是否存在非零整数a,使A∩B≠¢?若存在,求出A∩B,若不存在,请说明理由?
先观察下 找找规律
A=(1,-1) (2,0) (3,1)……
B=(1,a) (2,3a) (3,7a)……
存在非零整数a,使A∩B≠¢
很明显a=-1…… 如果一个个找下去会很麻烦
规律是 x相同时 y也相等
所以x-2=a(x^2-x+1) 而a=(x-2)/(x^2-x+1)
因为x是自然数 而a是非零整数
a是非零整数 当x>2时分子就小于分母了 a就是分数了
所以只有 a=-1 符合
存在 a=-1

不会!!!!!!!!!!!!!

x^2这是什么意思