已知函数f(x)=mx²-|x|+2m-1(m为常数).设h(x)=f(x)/x,若函数h(x)在区间[1,2]上是增函数,求实数m的取

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:52:12
已知函数f(x)=mx²-|x|+2m-1(m为常数).设h(x)=f(x)/x,若函数h(x)在区间[1,2]上是增函数,求实数m的取
xSn@ QCHTTAfP/0M+6!m6 *JjR;K;wHIY&hm'9jG {9fր8(Q +PT[a~HxҳIJ $4]\y͎p嘶Sx9Ш*?ީl/˝Z$TQgjSC8./c2V@)rQtuSfhmA#R:Yנv*wd=zfS[rWٯ3nT1ڧgmCסϞ,ť+|T.$ݐn{"R⎅WS%< Sp1yԩ"G E6<=^N;x

已知函数f(x)=mx²-|x|+2m-1(m为常数).设h(x)=f(x)/x,若函数h(x)在区间[1,2]上是增函数,求实数m的取
已知函数f(x)=mx²-|x|+2m-1(m为常数).设h(x)=f(x)/x,若函数h(x)在区间[1,2]上是增函数,求实数m的取

已知函数f(x)=mx²-|x|+2m-1(m为常数).设h(x)=f(x)/x,若函数h(x)在区间[1,2]上是增函数,求实数m的取
x>0,
h(x)=f(x)/x=mx-1+(2m-1)/x
h'(x)=m-(2m-1)/x^2
函数h(x)在区间[1,2]上是增函数
即x∈[1,2],h'(x)=m-(2m-1)/x^2≥0恒成立
即 mx^2≥2m-1
当m=0时,0≥-1,成立
当 m>0时,mx^2∈[m,4m],需m≥2m-1 =>m≤1
当mm≥-1/2
综上所述,符合条件的m的取值范围是-1/2≤m≤1

在区间[1,2],h(x)=mx+(2m-1)/x-1
若m>=1/2, 则有:mx+(2m-1)/x>=2√[m(2m-1)], 在x=√(2-1/m)取得最小值, 最小值点应位于区间外,否则不单调,而显然此最小值点不大于√2,故√(2-1/m)<=1, 得:m<=1, 即1/2=若0=

全部展开

在区间[1,2],h(x)=mx+(2m-1)/x-1
若m>=1/2, 则有:mx+(2m-1)/x>=2√[m(2m-1)], 在x=√(2-1/m)取得最小值, 最小值点应位于区间外,否则不单调,而显然此最小值点不大于√2,故√(2-1/m)<=1, 得:m<=1, 即1/2=若0=若m<0, mx+(2m-1)/x<=-2√[m(2m-1)], 在x=√(2-1/m)取得最大值,而此最值点大于√2,需位于区间外,故√(2-1/m)>=2, 得 -1/2=因此综合得:-1/2=

收起