函数f(x)=sinxcosx+根号3cos^2x-根号3/2最小正周期 最大值 增区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:27:06
函数f(x)=sinxcosx+根号3cos^2x-根号3/2最小正周期 最大值 增区间
xN@_%G&vA=y=""$^L\ۖHPoB8}ޡx6+0^Grzg??όw)i-V

函数f(x)=sinxcosx+根号3cos^2x-根号3/2最小正周期 最大值 增区间
函数f(x)=sinxcosx+根号3cos^2x-根号3/2
最小正周期 最大值 增区间

函数f(x)=sinxcosx+根号3cos^2x-根号3/2最小正周期 最大值 增区间
f(x)=sinxcosx+√3(cosx)^2-√3/2

=(1/2)sin2x+(√3/2)cos2x

=sin2xcosπ/3+cos2xsinπ/3

=sin(2x+π/3)

f(x)=sinxcosx+√3(cosx)^2-√3/2
=(1/2)sin2x+(√3/2)cos2x
=sin2xcosπ/3+cos2xsinπ/3
=sin(2x+π/3)
1.
0<=x<=π/2,则π/3<=2x+π/3<=4π/3
π/2<=2x+π/3<=4π/3,则π/12<=x<=π/2,即单调递区...

全部展开

f(x)=sinxcosx+√3(cosx)^2-√3/2
=(1/2)sin2x+(√3/2)cos2x
=sin2xcosπ/3+cos2xsinπ/3
=sin(2x+π/3)
1.
0<=x<=π/2,则π/3<=2x+π/3<=4π/3
π/2<=2x+π/3<=4π/3,则π/12<=x<=π/2,即单调递区间是[π/12,π/2]
当2x+π/3=π/2、即x=π/12时,f(x)取得最大值f(π/12)=1。
当2x+π/3=4π/4、即x=π/2时,f(x)取得最小值f(π/2)=-√3/2。
所以,值域为:[-√3/2,1]。
2.
f(x)=sin(2x+π/3)向右平移π/6个单位得到的是函数y=sin2x。
y=sin2x大于零的零点组成首项为π、公差为π的等差数列。
Sn=nπ+n(n-1)*π/2=(π/2)n^2+(π/2)n,n为正整数。

收起