f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)的对称轴方程,在〖—π/12.π/2〗的值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:45:41
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)的对称轴方程,在〖—π/12.π/2〗的值域
x)KӨдM/0x|Qqfk hg<] /ny6m:Ox0QC#= ia:HaÞ$;:qF @*u2rfU肅lQ*`@1@af@PhXčE, 1X0F 1s}I

f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)的对称轴方程,在〖—π/12.π/2〗的值域
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)的对称轴方程,在〖—π/12.π/2〗的值域

f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)的对称轴方程,在〖—π/12.π/2〗的值域
f(x)=1/2 cos2x+√3/2 sin2x-cos2x=√3/2 sin2x-1/2cos2x
=sin(2x-π/6)
2x-π/6∈[-π/3,5π/6]
f(x)∈[-√3/2,1]