已知函数f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).求tana=2时,f(a)若x属于〔π/12,π/2〕,求f(x)的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:43:28
xSn@~6^wRnqA%Dۦ-J*$jġw;kW`fER K~7?4pdvxc&|{WȊBgDn0fk9`ײːKMv>V0{xQ1RM{K0ѷPʟփ*3 =\~K. DfG
_ޑK¸qtޑj-۵#`N"z|'nGCiP4I#ybP((-yp%O@r:AC[2jS.&/FiMV'Lw253o rԂʊ3`7 [jqnM`;-Njt^~Y'ޅtGPMe|9'/Ȁ!HEsqXO`RFTҿ
已知函数f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).求tana=2时,f(a)若x属于〔π/12,π/2〕,求f(x)的取值范围
已知函数f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).求tana=2时,f(a)
若x属于〔π/12,π/2〕,求f(x)的取值范围
已知函数f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).求tana=2时,f(a)若x属于〔π/12,π/2〕,求f(x)的取值范围
,而sin^2a+cos^2a=1,得sin^2a=4/5
f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).
=sinx(cosx+sinx)+2sin(x+π/4)cos(x+π/4)
=1/2sin2x+sin^2x+sin(2x+π/2)
=1/2sin2x+1/2-1/2cos2x+cos2x
=(sin2x+cos2x+1)/2
tana=sina/cosa=2,所以sin^2a=4cos^2a,即1-cos2a=4*(1+cos2a)得cos2a=-3/5
sin2a=2sinacosa/(sin^2a+cos^2a)=2tana/(tan^2a+1)=4/5
所以f(a) =1/2*(4/5-3/5+1)=3/5
(2)令f’(x)=1/2(cos2x-sin2x)>=0,接下来就是求单调区间,然后得到取值范围,具体不想再算了,主要是方法.
这种题一般先要化简,对于函数题可以求导然后数形结合得值域.