sin(TT/4+2x)sin(TT/4-2x)=1/4,求2sin^2x+tanx-cotx-1x属于(TT/4,TT/2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:39:59
sin(TT/4+2x)sin(TT/4-2x)=1/4,求2sin^2x+tanx-cotx-1x属于(TT/4,TT/2)
xRN@+aA+69\%1p)3hAT*~.x ;{o;\[*aJuVecx2exvS'"j<Ȫٻ/D݆wƓ`"<<^>'tXPp,,?$qēEVkn֡E

sin(TT/4+2x)sin(TT/4-2x)=1/4,求2sin^2x+tanx-cotx-1x属于(TT/4,TT/2)
sin(TT/4+2x)sin(TT/4-2x)=1/4,求2sin^2x+tanx-cotx-1
x属于(TT/4,TT/2)

sin(TT/4+2x)sin(TT/4-2x)=1/4,求2sin^2x+tanx-cotx-1x属于(TT/4,TT/2)
sin(TT/4+2x)sin(TT/4-2x)=sin(TT/4+2x)cos(TT/4+2x)
=(1/2)sin(TT/2+4x) (二倍角公式)
=(1/2)cos4x=1/4
所以,cos4x=1/2
又因为x属于(TT/4,TT/2),所以,4x属于(TT,2TT)
所以,4x为第四象限角,为(5/3)TT x=(5/12)TT 2x=(5/6)TT
2sin^2x+tanx-cotx-1
=1-cos2x+(sin^2x-cos^2x)/(cosx*sinx)-1
=-cos2x-2(cos2x)/(sin2x)
=-cos(5/6)TT-2cot(5/6)TT
=(3/2)*根号3
化简所用到的公式是二倍解公式
cos2x=cos^2x-sin^2x=1-2sin^2x=2cox^2x-1