1^2+(1*2)^2+2^2=9=3^2 2^2+(2*3)^2+3^2=49=7^2 3^2+(3*4)^2+4^2=169=13^2找规律

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:25:29
1^2+(1*2)^2+2^2=9=3^2 2^2+(2*3)^2+3^2=49=7^2 3^2+(3*4)^2+4^2=169=13^2找规律
xK 0@eۀ%iQ M/"\֍Ѝq4&Nt'2yo23I8#&+1ilWSsƮieS]FuI'?Ή.(e2VWt@1bTm B08g,Qe+ϩJWr[eSkEcܯٛ8.B7jc

1^2+(1*2)^2+2^2=9=3^2 2^2+(2*3)^2+3^2=49=7^2 3^2+(3*4)^2+4^2=169=13^2找规律
1^2+(1*2)^2+2^2=9=3^2 2^2+(2*3)^2+3^2=49=7^2 3^2+(3*4)^2+4^2=169=13^2找规律

1^2+(1*2)^2+2^2=9=3^2 2^2+(2*3)^2+3^2=49=7^2 3^2+(3*4)^2+4^2=169=13^2找规律
1^2+(1*2)^2+2^2=9=3^2
2^2+(2*3)^2+3^2=49=7^2
3^2+(3*4)^2+4^2=169=13^2
则可推知
n^2 + [n*(n+1)]^2 + (n+1)^2 = [n*(n+1)+1]^2
很明显等式成立.
因为右式[n*(n+1)+1]^2展开为
[n*(n+1)+1]^2 = [n*(n+1)]^2 +2n(n+1) +1
= [n*(n+1)]^2 +2n^2+2n +1
= [n*(n+1)]^2 +(n^2+2n +1)+n^2
= [n*(n+1)]^2 +(n+1)^2+n^2
= 左式