化简a根号a+b/a-b -b根号a-b/a+b -2b^2/根号a^2-b^2(a>b>0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 02:54:54
化简a根号a+b/a-b -b根号a-b/a+b -2b^2/根号a^2-b^2(a>b>0)
xSjA}%RIf5}%f6k7"(BP,) E*HWbF+8nbzM9ߜscoF:h,<#C0pZV SlC*# [bw5oQఎ~v{vW`4N#| I7nCƔQ R…ћ],͔or"w" yH[u4{`y,ً;=v8Y(K'Z}hIgi(m O-X9ݰ4'3)e]G\6ES xu:~y~9 }Psm\.56gr54U5_ELmmr! z{cu vHl[RVycӦ|\DqMc" :֑BUEu4@UUɦʪ$kДkDC:u 0e U*Ubp5`ϢЕ(jE˲U`+:#KX7M"kT2 +&L7k`

化简a根号a+b/a-b -b根号a-b/a+b -2b^2/根号a^2-b^2(a>b>0)
化简a根号a+b/a-b -b根号a-b/a+b -2b^2/根号a^2-b^2(a>b>0)

化简a根号a+b/a-b -b根号a-b/a+b -2b^2/根号a^2-b^2(a>b>0)
原式=a√[(a+b)/(a-b)]-b√[(a-b)/(a+b)]-2b²/√(a²-b²) 分母有理化
=a√[(a+b)(a-b)/(a-b)²]-b√[(a+b)(a-b)/(a+b)²]-2b²√(a²-b²)/√(a²-b²)²
=[a√(a²-b²)]/(a-b)-[b√(a²-b²)]/(a+b)-[2b²√(a²-b²)]/(a²-b²) 通分
=[a(a+b)√(a²-b²)]/(a²-b²)-[b(a-b)√(a²-b²)]/(a²-b²)-[2b²√(a²-b²)]/(a²-b²)
={[a(a+b)-b(a-b)-2b²]√(a²-b²)}/(a²-b²)
=[(a²+ab-ab+b²-2b²)√(a²-b²)]/(a²-b²)
=[(a²-b²)√(a²-b²)]/(a²-b²)
=√(a²-b²)

已知a>b>0,那么:a+b>0,a-b>0
所以:
a根号[(a+b)/(a-b)] - b根号[(a-b)/(a+b)] - 2b^2/根号(a^2-b^2)
=a[根号(a²-b²)]/(a-b) -b[根号(a²-b²)]/(a+b) - 2b²[根号(a²-b²)]/(a²-b...

全部展开

已知a>b>0,那么:a+b>0,a-b>0
所以:
a根号[(a+b)/(a-b)] - b根号[(a-b)/(a+b)] - 2b^2/根号(a^2-b^2)
=a[根号(a²-b²)]/(a-b) -b[根号(a²-b²)]/(a+b) - 2b²[根号(a²-b²)]/(a²-b²)
=根号(a²-b²)*[ a/(a-b) -b/(a+b) - 2b²/(a²-b²)]
=根号(a²-b²)*[ (a²+ab-ab+b²- 2b²)/(a²-b²)]
=根号(a²-b²)*[ (a²-b²)/(a²-b²)]
=根号(a²-b²)

收起