f(x)=-1/3x^3+1/2x^2+2ax 在2/3 到正无穷上存在单调增区间 求a范围 主要是想法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 03:14:26
xRn@K
.hJ$wBf`
iU `\ۄ|vT۶z7̜{ιb9yQrP<9g`04^OpE;TtEUb-Vg9lZ]*Koz_#Q.KЀl6=IA#1ݢ#ohW?{V32~3mV1b6dϙwPت!EҦƘ$b1oCYz'>%ć`zƪ\ٶ\t1r|Qå*t++-{^m7&>p|Z͟:R趠փFsvwYC AC"z6D
f(x)=-1/3x^3+1/2x^2+2ax 在2/3 到正无穷上存在单调增区间 求a范围 主要是想法
f(x)=-1/3x^3+1/2x^2+2ax 在2/3 到正无穷上存在单调增区间 求a范围 主要是想法
f(x)=-1/3x^3+1/2x^2+2ax 在2/3 到正无穷上存在单调增区间 求a范围 主要是想法
存在单调增区间
即f'(x)>0有解
-x²+x+2a>0有解
二次函数开口向下
对称轴x=1/2
所以x>2/3递减
所以必须x=2/3
-x²+x+2a>0
a>-1/9
首先肯定这题是要求导滴!
其次令f‘(x)≥0
最后分离a,写出表达为a≥?,或a≤?
因为(2/3,+无穷)单调增
所以看情况若a≥?求出?的最大值,大于?的最大值即可
若a≤?求出?的最小值,大于?的最小值即可
一般都是这样做的!...
全部展开
首先肯定这题是要求导滴!
其次令f‘(x)≥0
最后分离a,写出表达为a≥?,或a≤?
因为(2/3,+无穷)单调增
所以看情况若a≥?求出?的最大值,大于?的最大值即可
若a≤?求出?的最小值,大于?的最小值即可
一般都是这样做的!
收起
已知f(x)满足2f(x)+f(1/x)=3x,求f(x)
F(X)满足F(x)+2f(x分之1)=3X,求f(x)
已知f(x)满足2f(x)+f(1/x)=3x,求f(x)?
已知f(x)满足2f(x)+f(-x)=-3x+1,求f(x)
已知f(x)满足f(x)+2f(1/x)=3x,求f(x) ,
已知函数f(x)=x^3+x^2-2x-x,f(1)f(2)
f(x+1)+f(x-1)=4x^3-2x求f(x)
已知f(x+1/x-1)=3f(x)-2x,求f(x)
已知f(x)+2f(1/x)=x+2/x+3,求f(x)
设f(x)={3x-1,x=0,求f(-x),f(x-2).
f(x-1)=x^2-2x+3(x
f(x)=(x-1)(x-2).(x-3)求导
f(x)=5x+3 f(x)=5x f(x)=x+2x+1 f(x)=5x+3 f(x)=5x f(x)=x+2x+1
f(x)+2f(1/x)=3x
f(1+x)+2f(1-x)=3x^2 求f(x)f(1+x)+2f(1-x)=3x^2求f(x)
F(x)=3x^2+2x-1 求F(x+△x)-f(x)/ △x
f(x)满足f(-x)+2f(x)=x+3,则f(1)等于
(1) 已知f(x+1)=x*2+x,求f(x).(2)已知f(x-1/x)=(x+1/x)*2,求f(x) (3)已知f[f(x)]=2x)-1,求一次函数f(x)