已知二次函数f(x)=ax^2+bx+c的导数为f'(x)对于任意实数x,都有f(x)>=0,则f(1)/f′(0)的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 00:41:44
已知二次函数f(x)=ax^2+bx+c的导数为f'(x)对于任意实数x,都有f(x)>=0,则f(1)/f′(0)的最小值
xՒJ@_&&:I2G)dYJM+N@HEiVKC̄ At+HȜ -˛O-;\P+Yd)*`ϊ$ᣀ=^ʛOj-"so)("$RDso[ܖ~iեeF`ft=K;0ܟ) VCVؔdu1&f7MilS>6` XG %i9Pbxv^"9^E` z2c8?ܴC7B]

已知二次函数f(x)=ax^2+bx+c的导数为f'(x)对于任意实数x,都有f(x)>=0,则f(1)/f′(0)的最小值
已知二次函数f(x)=ax^2+bx+c的导数为f'(x)对于任意实数x,都有f(x)>=0,则f(1)/f′(0)的最小值

已知二次函数f(x)=ax^2+bx+c的导数为f'(x)对于任意实数x,都有f(x)>=0,则f(1)/f′(0)的最小值
已知二次函数f(x)=ax^2+bx+c的导数为f'(x).f'(x)>0,对任意实数x有f(x)≥0,则f(1)/f'(0)的最小值
由题意对任意实数x有f(x)≥0得
判别式Δ=b^2-4ac≤0,a≥(b^2)/4c
f(1)=a+b+c,f'(0)=b
∴f(1)/f(0)=(a+b+c)/b
=a/b+c/b+1(∵a≥(b^2)/4c)
≥b/4c+c/b+1
≥2√(b/4c*c/b)+1=2
当且仅当 b/4c=c/b ,b^2=4ac时,f(1)/f'(0)的最小值为2

2