在线等、在三角形ABC中、已知cosA=4/5,cosB=12/13,求cosC

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 04:05:28
在线等、在三角形ABC中、已知cosA=4/5,cosB=12/13,求cosC
xQJ@,'IISr I?C,d@  iHAbuSn,mc鮿ºffνsι;lǷtN9Yߊ6D??ҧqF >\2Z5+>dhذWs2VQ7Y:'mLey,w+i E*ͥf\^QgHQ)!eE @@*&-t }ف{R1CY kT!}QDޕ^l/9- 訣*e#[7*ǔi`&Me:yĦk7˴3P])(IU2仱PѨ+ p2T

在线等、在三角形ABC中、已知cosA=4/5,cosB=12/13,求cosC
在线等、在三角形ABC中、已知cosA=4/5,cosB=12/13,求cosC

在线等、在三角形ABC中、已知cosA=4/5,cosB=12/13,求cosC
因为cosA=4/5,所以sinA=3/5,因为cosB=12/13,所以sinB=5/13,在三角形ABC中,由正弦定理得:a/sinA=b/sinB a/b=sinA/sinB=3/5/5/13=39/25,所以a=39k b=25k,由余弦定理得:a^2=b^2+c^2-2bccosA (39k)^2=(25k)^2+c^2-2*25k*c*(4/5)解得c=56k c=-16k(应舍去),由余弦定理得:cosC=(a^2+b^2-c^2)/2ab=[(39k)^2+(25k)^2-(56k)^2]/2*39k*25k=-33/65,所以cosC=-33/65

sinA=3/5, sinB=5/13
cosC=-cos(A+B)=sinAsinB-cosAcosB=15/65-48/65=-33/65