等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:24:35
xJ@_%e{DJXI-E ɼ:el=Eɿo^|$ܯaB2a$
_GAګJ̩d$GR\%\A%.z \VJ̺6tNUEb!kë
Y@luI==\/H6Qojިz/'qʰ+;vG#'rz @Mv1);%ƌ6
等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=
等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=
等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=
6S5-5S3=5
由等差数列前n项和公式Sn=na1+[n(n-1)/2]*d,得:
S5=5a1+[(5×4)/2]*d=5a1+10d
S3=3a1+[(3×2)/2]*d=3a1+3d
∴6(5a1+10d)-5(3a1+3d)=5
即15a1+45d=5
故a1+3d=1/3
即a4=1/3.
6S5-5S3=5;
30a3 - 15a2 = 5;
2a3-a2=1/2;
2a3 = a2+a4;
所以,a4 = 1/2