设f(x)=1/(1+2^lgx)+1/(1+4^lg4)+1/(1+8^lgx),则f(x)+f(1/x)=?答案是3不会写.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:38:13
设f(x)=1/(1+2^lgx)+1/(1+4^lg4)+1/(1+8^lgx),则f(x)+f(1/x)=?答案是3不会写.
x){n_FQ\Nz6md@`q3Aj4 Z쟯ladz덟}gӶz6IE 6a2d~ \ 6QHm===k$X7Ḃ* kifBmV@7UBB5T6BA>\&jHMV0T% (RچP5Fq(z Ana4>`=|BOM:F 15[Fx

设f(x)=1/(1+2^lgx)+1/(1+4^lg4)+1/(1+8^lgx),则f(x)+f(1/x)=?答案是3不会写.
设f(x)=1/(1+2^lgx)+1/(1+4^lg4)+1/(1+8^lgx),则f(x)+f(1/x)=?
答案是3
不会写.

设f(x)=1/(1+2^lgx)+1/(1+4^lg4)+1/(1+8^lgx),则f(x)+f(1/x)=?答案是3不会写.
f(x)= 1/(1+2^lgx) + ...;
f(1/x)= 1/(1+2^lg(1/x)) + ...= 1/(1+2^(-lgx))+ ...
f(x)+f(1/x) = 1/(1+2^lgx) + 1/(1+2^(-lgx)) + ...
= {1+2^lgx+1+2^(-lgx)}/{1+2^lgx+2^(-lgx)+2^lgx*2^(-lgx)+ ...
= (1+ 1 2^(lgx-lgx)+..
= (1+ +1)/ (1+ 1 (2^0))+ ...
= 1 + 1 + 1
=3
省略的是同理可得啊