苏教版七下数学书101页16题小亮在均速行驶的汽车里,注意到公路里程碑上的数是两位数:1小时后看到里程碑上的数与第一次看到的数又恰好是颠倒了的数字顺序:再过1h,第三次看到里程碑上

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 00:56:53
苏教版七下数学书101页16题小亮在均速行驶的汽车里,注意到公路里程碑上的数是两位数:1小时后看到里程碑上的数与第一次看到的数又恰好是颠倒了的数字顺序:再过1h,第三次看到里程碑上
xn@_,Xdا*ԾUc!NZQJJ#BMwOB6ȁs7xjE8.tb>  zf#PBh 1d\}ҫX#:$n.X4& NXxrްmEIQwmGd9߃k cT }bQsړ~l#yiK

苏教版七下数学书101页16题小亮在均速行驶的汽车里,注意到公路里程碑上的数是两位数:1小时后看到里程碑上的数与第一次看到的数又恰好是颠倒了的数字顺序:再过1h,第三次看到里程碑上
苏教版七下数学书101页16题
小亮在均速行驶的汽车里,注意到公路里程碑上的数是两位数:1小时后看到里程碑上的数与第一次看到的数又恰好是颠倒了的数字顺序:再过1h,第三次看到里程碑上的数又恰好是第一次看到的两位数的数字之间添加一个0的三位数,这三块里程碑上的数各是多少?问题补充:
列方程,写解设,写结果

苏教版七下数学书101页16题小亮在均速行驶的汽车里,注意到公路里程碑上的数是两位数:1小时后看到里程碑上的数与第一次看到的数又恰好是颠倒了的数字顺序:再过1h,第三次看到里程碑上
设第一次的公路里程碑上的两位数是10a+b,则1h后的公路里程碑上的两位数是10b+a,再过1h后的公路里程碑上的两位数是100a+b.有题意知:(10b+a)-(10a+b)=(100a+b)-(10b+a),即9b-9a=99a-9b,所以108a=18b,所以b=6a,因为a,b都是个位数,所以a=1,b=6..这三块里程碑上的数各是多少16,61,106.