设函数f(x)=1/4x^4+1/3ax^3+1/2bx^2+2x在x=-1处取得极值,又在x=c(c不等于-2)处有f'(c)=0,但在x=c处无极值,求a,b的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 19:52:02
x͒N@_d$j($$,
,(J @(AC:W鏆Mo~̹75KӜfs0H=
Yd2mV3`D3m->oחSԟ4u0XЯ Pg
ۃX-^v+ôI.mE"3NrȒqa_80$11&!.UTiݡyǝצ!cS&8+n_eCBxo=0h_1Ŭkf_Iv0eF5 CP0YR'= U8Y8ݘMpTI"pZh R$Ld-
设函数f(x)=1/4x^4+1/3ax^3+1/2bx^2+2x在x=-1处取得极值,又在x=c(c不等于-2)处有f'(c)=0,但在x=c处无极值,求a,b的值
设函数f(x)=1/4x^4+1/3ax^3+1/2bx^2+2x在x=-1处取得极值,又在x=c(c不等于-2)处有f'(c)=0,但在x=c处无极值,求a,b的值
设函数f(x)=1/4x^4+1/3ax^3+1/2bx^2+2x在x=-1处取得极值,又在x=c(c不等于-2)处有f'(c)=0,但在x=c处无极值,求a,b的值
f'(x)=x³+ax²+bx+2
∵f(x)在x=-1处取得极值
∴f'(-1)=0 ,f'(x)可以分解出(x+1)
∵f'(c)=0,但在x=c处无极值
∴x=c是f'(x)的不变号零点
即f'(x)可以分解出因式(x-c)²
∴f'(x)=(x+1)(x-c)²
=(x+1)(x²-2cx+c²)
=x³+(1-2c)x²+(c²-2c)x+c²
与f'(x)=x³+ax²+bx+2
∴c²=2,a=1-2c,b=c²-2c
∴c=√2,a=1-2√2,b=2-2√2
或c=-√2,a=1+2√2,b=2+2√2
设a∈R,函数f(x)=x²+ax+4(1)解不等式f(x)+f(-x)
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-2x^2+2x-3)>f(x^2+4x+3)
设函数f(x)=ax+4,若f'(1)=2,则a等于
已知函数f(x)=x^2-ax+4,x∈[-3,-1],若f(x)
设函数f(x)={(1/2)^x(x≥4),f(x+3)(x
设函数f(x)=x^3+ax^2-9x-1(a
设函数f(x)=x^3+ax^2-9x-1(a
设函数f(x)=x^3+ax^2-9x-1(a
设函数f(x)=x^3+ax^2-9x-1(a
设函数f(x)=1/3x^3-(1+a)x^2+4ax+24a,其中常数a>1,求f(x)的单调性
设函数f(x)=1/3x^3-(1+a)*x^2+4ax+24a,其中常数a>0f(x)的单调性
设函数f(x)=loga(1-ax),其中0
设函数f(x)=(ax+b)/(x*x+1)的值域为[-1,4]求a,b的值
设函数f(x)=e^x/(1+ax^2),其中a为正实数 1.当a=4/3时,求f(x)的极值点
设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
函数f(x)=ax^2+4 (a为非零实数),设函数F(x)={ f(x),x>0时 ; -f(x),x<0时}解不等式 1≤ |F(x)| ≤2
设函数f(x)=(1/2)^x(x≥4), f(x)=f(x+3)(x