Sn是等差数列{an}前n项和,已知1/3 S3  与1/4S4的等比中项为1/5S5,而1/3S3与1/4S4的等差中项为1,求an?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:51:45
Sn是等差数列{an}前n项和,已知1/3 S3  与1/4S4的等比中项为1/5S5,而1/3S3与1/4S4的等差中项为1,求an?
xRj1C!Xczeӹ.Yf-L,&`CBqMh M.v[ʿ+(qL t5{vfUߎ[;~;h~/}]0*jx6[/k'Fe&g(,nߌL%!31 }?2 MGvbnˀ&')m9&I? (.RL9-TFKup3/DjA5qcPܩA7ͧm..Nc,H+$D"4A0VD$t-%+ hD"x<{_/

Sn是等差数列{an}前n项和,已知1/3 S3  与1/4S4的等比中项为1/5S5,而1/3S3与1/4S4的等差中项为1,求an?
Sn是等差数列{an}前n项和,已知1/3 S3  与1/4S4的等比中项为1/5S5,而1/3S3与1/4S4的等差中项为1,求an?

Sn是等差数列{an}前n项和,已知1/3 S3  与1/4S4的等比中项为1/5S5,而1/3S3与1/4S4的等差中项为1,求an?
S3=3a+3d
S4=4a+6d
S5=5a+10d
由题意得:1/3(3a+3d)*1/4(4a+6d)=[1/5(5a+10d)]^2
1/3(3a+3d)+1/4(4a+6d)=1*2
所以:a=4,d=-12/5
所以:an=4-12/5(n-1)

设An=a+(n-1)d,Sn=na+n(n-1)d/2
(1/3)S3 *(1/4)S4=[(1/5)S5]^2
(1/3)S3+(1/4)S4=1*2=2
(1/3)(3a+3d) *(1/4)(4a+6d)=(1/25)(5a+10d)^2
(1/3)(3a+3d)+(1/4)(4a+6d)=2
(a+d) *(a+3d/2)=(a+2d)^2=a...

全部展开

设An=a+(n-1)d,Sn=na+n(n-1)d/2
(1/3)S3 *(1/4)S4=[(1/5)S5]^2
(1/3)S3+(1/4)S4=1*2=2
(1/3)(3a+3d) *(1/4)(4a+6d)=(1/25)(5a+10d)^2
(1/3)(3a+3d)+(1/4)(4a+6d)=2
(a+d) *(a+3d/2)=(a+2d)^2=a^2+4ad+4d^2
(a+d)+(a+3d/2)=2a+5d/2=2
-3ad=5d^2
2a+5d/2=2
d=0,a=1或d=-12/5,a=4
An=1或An=4-(12/5)(n-1)=-(12/5)n+32/5
An=1或An=-(12/5)n+32/5

收起